
WAP WTP Version 30-April-1998

Wireless Application Protocol
Wireless Transaction Protocol Specification

Disclaimer:

This document is subject to change without notice.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 2(71)Version 30-April-1998

Contents

CONTENTS.. 2

1. SCOPE .. 6

2. DOCUMENT STATUS ... 7

2.1 COPYRIGHT NOTICE.. 7
2.2 ERRATA .. 7
2.3 COMMENTS... 7

3. REFERENCES... 8

3.1 NORMATIVE REFERENCES... 8
3.2 INFORMATIVE REFERENCES.. 8

4. DEFINITIONS AND ABBREVIATIONS.. 9

4.1 DEFINITIONS.. 9
4.2 ABBREVIATIONS.. 10
4.3 REQUIREMENTS... 11

5. PROTOCOL OVERVIEW ... 12

5.1 PROTOCOL FEATURES... 12
5.2 TRANSACTION CLASSES.. 13

5.2.1 Class 0: Unreliable invoke message with no result message .. 13
5.2.2 Class 1: Reliable invoke message with no result message.. 13
5.2.3 Class 2: Reliable invoke message with one reliable result message... 13

5.3 RELATION TO OTHER PROTOCOLS... 14
5.4 SECURITY CONSIDERATIONS... 14
5.5 MANAGEMENT ENTITY ... 14
5.6 STATIC WTP CONFORMANCE CLAUSE.. 15
5.7 OTHER WTP USERS.. 16

6. ELEMENTS FOR LAYER-TO-LAYER COMMUNICATION ... 17

6.1 NOTATIONS USED... 17
6.1.1 Definition of Service Primitives and Parameters.. 17
6.1.2 Primitives Types.. 17
6.1.3 Service Parameter Tables ... 17

6.2 REQUIREMENTS ON THE UNDERLYING LAYER .. 18
6.3 SERVICES PROVIDED TO UPPER LAYER .. 18

6.3.1 TR-Invoke.. 18
6.3.2 TR-Result... 20
6.3.3 TR-Abort ... 20

7. CLASSES OF OPERATION .. 21

7.1 CLASS 0 TRANSACTION... 21
7.1.1 Motivation... 21
7.1.2 Protocol Data Units .. 21
7.1.3 Procedure.. 21

7.2 CLASS 1 TRANSACTION... 21
7.2.1 Motivation... 21
7.2.2 Service Primitive Sequences ... 21
7.2.3 Protocol Data Units .. 22
7.2.4 Procedure.. 22

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 3(71)Version 30-April-1998

7.3 CLASS 2 TRANSACTION... 22
7.3.1 Motivation... 22
7.3.2 Service Primitive Sequences ... 22
7.3.3 Protocol Data Units .. 23
7.3.4 Procedure.. 23

8. PROTOCOL FEATURES... 24

8.1 MESSAGE TRANSFER... 24
8.1.1 Description.. 24
8.1.2 Service Primitives ... 24
8.1.3 Transport Protocol Data Units ... 24
8.1.4 Timer Intervals and Counters ... 24
8.1.5 Procedure.. 25

8.2 RE-TRANSMISSION UNTIL ACKNOWLEDGEMENT... 26
8.2.1 Motivation... 26
8.2.2 Transport Protocol Data Units ... 26
8.2.3 Timer Intervals and Counters ... 26
8.2.4 Procedure.. 26

8.3 USER ACKNOWLEDGEMENT.. 26
8.3.1 Motivation... 26
8.3.2 Protocol Data Units .. 28
8.3.3 Procedure.. 29

8.4 INFORMATION IN LAST ACKNOWLEDGEMENT... 29
8.4.1 Motivation... 29
8.4.2 Service Primitives ... 29
8.4.3 Protocol Data Units .. 29
8.4.4 Procedure.. 29

8.5 CONCATENATION AND SEPARATION.. 30
8.5.1 Motivation... 30
8.5.2 Procedure.. 30

8.6 ASYNCHRONOUS TRANSACTIONS.. 30
8.6.1 Motivation... 30

8.7 TRANSACTION ABORT... 31
8.7.1 Motivation... 31
8.7.2 Transport Protocol Data Units ... 31
8.7.3 Service primitives.. 31
8.7.4 Procedure.. 31

8.8 TRANSACTION IDENTIFIER .. 31
8.8.1 Motivation... 31
8.8.2 Procedure at the Responder.. 32
8.8.3 Procedure at the Initiator ... 33

8.9 TRANSACTION IDENTIFIER VERIFICATION ... 34
8.9.1 Motivation... 34
8.9.2 Protocol Data Units .. 34
8.9.3 Procedure.. 34

8.10 TRANSPORT INFORMATION ITEMS (TPIS) ... 35
8.10.1 Motivation... 35
8.10.2 Procedure.. 35

8.11 TRANSMISSION OF PARAMETERS.. 35
8.11.1 Motivation... 35
8.11.2 Procedure.. 36

8.12 ERROR HANDLING... 36
8.12.1 Motivation... 36
8.12.2 Protocol Data Units .. 36
8.12.3 Procedure.. 36

8.13 VERSION HANDLING ... 36

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 4(71)Version 30-April-1998

8.13.1 Motivation... 36
8.13.2 Protocol Data Units .. 36
8.13.3 Procedure.. 36

8.14 SEGMENTATION AND RE-ASSEMBLY (OPTIONAL).. 37
8.14.1 Motivation... 37
8.14.2 Procedure for Segmentation ... 37
8.14.3 Procedure for Packet Groups ... 37
8.14.4 Procedure for Selective Re-transmission .. 38

9. STRUCTURE AND ENCODING OF PROTOCOL DATA UNITS ... 39

9.1 GENERAL.. 39
9.2 COMMON HEADER FIELDS .. 40

9.2.1 Continue Flag, CON ... 40
9.2.2 Group Trailer (GTR) and Transmission Trailer (TTR) flag.. 40
9.2.3 Packet Sequence Number.. 40
9.2.4 PDU Type.. 40
9.2.5 Reserved, RES... 40
9.2.6 Re-transmission Indicator, RID .. 40
9.2.7 Transaction Identifier, TID ... 40

9.3 FIXED HEADER STRUCTURE.. 41
9.3.1 Invoke PDU... 41
9.3.2 Result PDU ... 41
9.3.3 Acknowledgement PDU .. 42
9.3.4 Abort PDU .. 42
9.3.5 Segmented Invoke PDU (Optional)... 43
9.3.6 Segmented Result PDU (Optional) ... 43
9.3.7 Negative Acknowledgement PDU (Optional).. 43

9.4 TRANSPORT INFORMATION ITEMS... 44
9.4.1 General ... 44
9.4.2 Error TPI .. 45
9.4.3 Info TPI ... 45
9.4.4 Option TPI .. 45
9.4.5 Packet Sequence Number TPI (Optional) ... 46

9.5 STRUCTURE OF CONCATENATED PDUS.. 46

10. STATE TABLES.. 48

10.1 GENERAL.. 48
10.2 EVENT PROCESSING.. 48
10.3 ACTIONS... 48

10.3.1 Timers ... 48
10.3.2 Counters.. 49
10.3.3 Messages... 49

10.4 TIMERS, COUNTERS AND VARIABLES.. 49
10.4.1 Timers ... 49
10.4.2 Counters.. 50
10.4.3 Variables... 50

10.5 WTP INITIATOR .. 52
10.6 WTP RESPONDER... 54

11. EXAMPLES OF PROTOCOL OPERATION .. 56

11.1 INTRODUCTION... 56
11.2 CLASS 0 TRANSACTION... 57

11.2.1 Basic Transaction ... 57
11.3 CLASS 1 TRANSACTION... 57

11.3.1 Basic Transaction ... 57
11.4 CLASS 2 TRANSACTION... 57

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 5(71)Version 30-April-1998

11.4.1 Basic Transaction ... 57
11.4.2 Transaction with “hold on” Acknowledgement .. 58

11.5 TRANSACTION IDENTIFIER VERIFICATION ... 58
11.5.1 Verification Succeeds.. 58
11.5.2 Verification Fails .. 58
11.5.3 Transaction with Out-Of-Order Invoke... 59

11.6 SEGMENTATION AND RE-ASSEMBLY ... 60
11.6.1 Selective Re-transmission.. 60

APPENDIX A. DEFAULT TIMER AND COUNTER VALUES .. 62

APPENDIX B. PICS PROFORMA.. 65

B.1 INTRODUCTION... 65
B.2 ABBREVIATIONS AND SPECIAL SYMBOLS... 65

B.2.1 Status symbols .. 65
B.2.2 Other symbols .. 65

B.3 INSTRUCTIONS FOR COMPLETING THE PICS PROFORMA... 65
B.3.1 General structure of the PICS proforma ... 65
B.3.2 Additional information... 66
B.3.3 Exception information.. 66
B.3.4 Conditional status .. 67

B.4 IDENTIFICATION .. 68
B.4.1 Implementation identification .. 68
A.4.2 Protocol summary .. 69

B.5 WIRELESS TRANSACTION PROTOCOL.. 69
B.5.1 Applicability ... 69
B.5.5 Protocol Functions... 69

APPENDIX C. HISTORY AND CONTACT INFORMATION.. 71

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 6(71)Version 30-April-1998

1. Scope
A transaction protocol is defined to provide the services necessary for interactive "browsing" (request/response)
applications. During a browsing session, the client requests information from a server, which MAY be fixed or mobile, and
the server responds with the information. The request/response duo is referred to as a "transaction" in this document. The
objective of the protocol is to reliably deliver the transaction while balancing the amount of reliability required for the
application with the cost of delivering the reliability.

WTP runs on top a datagram service and optionally a security service. WTP has been defined as a light weight transaction
oriented protocol that is suitable for implementation in "thin" clients (mobile stations) and operates efficiently over wireless
datagram networks. The benefits of using WTP include:

• Improved reliability over datagram services. WTP relieves the upper layer from re-transmissions and acknowledgements
which are necessary if datagram services are used.

• Improved efficiency over connection oriented services. WTP has no explicit connection set up or teardown phases.
• WTP is message oriented and designed for services oriented towards transactions, such as “browsing”.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 7(71)Version 30-April-1998

2. Document Status
This document is available online in the following formats:

• PDF format at http://www.wapforum.org/.

2.1 Copyright Notice
© Copyright Wireless Application Protocol Forum, Ltd, 1998. All rights reserved.

2.2 Errata
Known problems associated with this document are published at http://www.wapforum.org/.

2.3 Comments
Comments regarding this document can be submitted to the WAP Forum in the manner published at
http://www.wapforum.org/.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 8(71)Version 30-April-1998

3. References

3.1 Normative References
[FLEX] FLEX™ Protocol Specification and FLEX™ Encoding and Decoding Requirements, Version G1.9,

Document Number 68P81139B01, March 16, 1998, Motorola.
[FLEXSuite] FLEX™ Suite of Application Protocols, Version 1.0, Document Number 6881139B10, October 29,

1997, Motorola.
[GSM0260] ETSI European Digital Cellular Telecommunication Systems (phase 2+) : General Packet Radio

Service (GPRS) - stage 1 (GSM 02.60)
[GSM0290] ETSI European Digital Cellular Telecommunication Systems (phase 2) : Unstructured Supplementary

Service Data(USSD) - stage 1 (GSM 02.90)
[GSM0340] ETSI European Digital Cellular Telecommunication Systems (phase 2+) : Technical realisation of the

Short Message Service (SMS) Point-to-Point (P) (GSM 03.40)
[GSM0360] ETSI European Digital Cellular Telecommunication Systems (phase 2+) : General Packet Radio

Service (GPRS) - stage 2 (GSM 03.60)
[GSM0390] ETSI European Digital Cellular Telecommunication Systems (phase 2) : Unstructured Supplementary

Service Data(USSD) - stage 2 (GSM 03.90)
[GSM0490] ETSI European Digital Cellular Telecommunication Systems (phase 2) : Unstructured Supplementary

Service Data(USSD) - stage 3 (GSM 04.90)
[IS130] EIA/TIA IS-130
[IS135] EIA/TIA IS-135
[IS136] EIA/TIA IS-136
[IS176] EIA/TIA IS-176 - CDPD 1.1 specifications
[IS637] TIA/EIA/IS-637: Short Message Services for Wideband Spread Spectrum Cellular Systems
[ISO7498] ISO 7498 OSI Reference Model
[ISO8509] ISO TR 8509 Service conventions
[ReFLEX] ReFLEX25 Protocol Specification Document, Version 2.6, Document Number 68P81139B02-A,

March 16, 1998, Motorola.
[RFC2119] S. Bradner "Keywords for use in RFCs to Indicate Requirement Levels", RFC2119,

http://www.internic.net/rfc/rfc2119.txt
[TR45.3.6] General UDP Transport Teleservice (GUTS) ñ Stage III, TR45.3.6/97.12.15
[WAE] "Wireless Application Environment Specification", WAP Forum. URL: http://www.wapforum.org/
[WAPARCH] "Wireless Application Protocol Architecture Specification", WAP Forum. URL:

http://www.wapforum.org/
[WAPUD] "WAP and GSM USSD", WAP Forum. URL: http://www.wapforum.org/
[WDP] "Wireless Datagram Protocol Specification", WAP Forum. URL: http://www.wapforum.org/
[WSP] "Wireless Session Protocol Specification", WAP Forum. URL: http://www.wapforum.org/

3.2 Informative References
[RFC768] J. Postel "User Datagram Protocol", RFC768, August 1980, http://www.internic.net/rfc/rfc768.txt
[RFC791] J. Postel "IP: Internet Protocol", RFC791, http://www.internic.net/rfc/rfc791.txt

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 9(71)Version 30-April-1998

4. Definitions and abbreviations

4.1 Definitions
For the purpose of this document the following definitions apply.

Device Address
The unique network address assigned to a device and following the format defined by an international standard such as
E.164 for MSISDN addresses, X.121 for X.25 addresses or RFC 791 for IPv4 addresses. An address uniquely identifies
the sending and/or receiving device.

Initiator
The WTP provider initiating a transaction is referred to as the Initiator.

Mobile Device
Refers to a device, such as a phone, pager, or PDA, connected to the wireless network via a wireless link. While the term
‘mobile’ implies the device is frequently moving, it MAY also include fixed or stationary wireless devices (i.e. wireless
modems on electric meters) connected to a wireless network.

Network Type
Network type refers to any network, which is classified by a common set of characteristics (i.e. air interface) and
standards. Examples of network types include GSM, CDMA, IS-136, iDEN, FLEX, ReFLEX, and Mobitex. Each
network type MAY contain multiple underlying bearer services.

Protocol Control Information (PCI)
Information exchanged between WTP entities to coordinate their joint operation.

Protocol Data Unit (PDU)
A unit of data specified in the WTP protocol and consisting of WTP protocol control information and possibly user data.

Responder
The WTP provider responding to a transaction is referred to as the Responder.

Service Data Unit (SDU)
Unit of information from an upper level protocol that defines a service request to a lower layer protocol.

Service Primitive
An abstract, implementation independent interaction between a WTP user and the WTP provider.

Transaction
The transaction is the unit of interaction between the Initiator and the Responder. A transaction begins with an invoke
message generated by the Initiator. The Responder becomes involved with a transaction by receiving the invoke. In WTP
several transaction classes have been defined. The invoke message identifies the type of transaction requested which
defines the action required to complete the transaction.

User Data
The data transferred between two WTP entities on behalf of the upper layer entities (e.g. session layer) for whom the
WTP entities are providing services.

WTP Provider
An abstract machine which models the behavior of the totality of the entities providing the WTP service, as viewed by
the user.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 10(71)Version 30-April-1998

WTP User
An abstract representation of the totality of those entities in a single system that make use of the WTP service. Examples
of WTP users include the WAP session protocol WSP or an application that runs directly onto WTP.

4.2 Abbreviations
For the purposes of this specification the following abbreviations apply.

API Application Programming Interface
CDMA Code Division Multiple Access
CDPD Cellular Digital Packet Data
CSD Circuit Switched Data
DBMS Database Management System
DCS Data Coding Scheme
ETSI European Telecommunication Standardization Institute
GPRS General Packet Radio Service
GSM Global System for Mobile Communication
GTR Group Trailer, indicates the end of packet group
GUTS General UDP Transport Service
IE Information Element
iDEN Integrated Digital Enhanced Network
IP Internet Protocol
LSB Least significant bits
MPL Maximum Packet Lifetime
MSISDN Mobile Subscriber ISDN (Telephone number or address of device)
MS Mobile Station
MSB Most significant bits
PCI Protocol Control Information
PCS Personal Communication Services
PLMN Public Land Mobile Network
R-Data Relay Data
RTT Round-Trip Time
SAR Segmentation and Re-assembly
SMSC Short Message Service Center
SMS Short Message Service
SPT Server Processing Time
TIA/EIA Telecommunications Industry Association/Electronic Industry Association
PDU Protocol Data Unit
SAP Service Access Point
SDU Service Data Unit
TTR Transmission Trailer
UDCP USSD Dialogue Control Protocol
UDH User-Data Header (see [GSM 03.40])
UDHL User-Data Header Length (see [GSM 03.40])
UDL User-Data Length (see [GSM 03.40])
UDP Unreliable Datagram Protocol
USSD Unstructured Supplementary Service Data
WAE Wireless Application Environment
WAP Wireless Application Protocol
WSP Wireless Session Protocol
WTP Wireless Transaction Protocol
WDP Wireless Datagram Protocol

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 11(71)Version 30-April-1998

4.3 Requirements
This specification uses the following words for defining the significance of each particular requirement:

MUST
This word, or the terms "REQUIRED" or "SHALL", mean that the definition is an absolute requirement of the
specification.

MUST NOT
This phrase, or the phrase "SHALL NOT", mean that the definition is an absolute prohibition of the specification.

SHOULD
This word, or the adjective "RECOMMENDED", mean that there MAY exist valid reasons in particular
circumstances to ignore a particular item, but the full implications MUST be understood and carefully weighed
before choosing a different course.

SHOULD NOT
This phrase, or the phrase "NOT RECOMMENDED" mean that there MAY exist valid reasons in particular
circumstances when the particular behaviour is acceptable or even useful, but the full implications SHOULD be
understood and the case carefully weighed before implementing any behaviour described with this label.

MAY
This word, or the adjective "OPTIONAL", mean that an item is truly optional. One vendor MAY choose to include
the item because a particular marketplace requires it or because the vendor feels that it enhances the product while
another vendor MAY omit the same item. An implementation which does not include a particular option MUST be
prepared to interoperate with another implementation which does include the option, though perhaps with reduced
functionality. In the same vein an implementation which does include a particular option MUST be prepared to
interoperate with another implementation which does not include the option (except, of course, for the feature the
option provides.)

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 12(71)Version 30-April-1998

5. Protocol Overview

5.1 Protocol Features
The following list summarizes the features of WTP.

• Three classes of transaction service:
 Class 0: Unreliable invoke message with no result message
Class 1: Reliable invoke message with no result message

 Class 2: Reliable invoke message with exactly one reliable result message
• Reliability is achieved through the use of unique transaction identifiers, acknowledgements, duplicate removal and re-

transmissions.
• No explicit connection set up or tear down phases. Explicit connection open and/or close imposes excessive overhead on

the communication link.
• Optionally user-to-user reliability: the WTP user confirms every received message.
• Optionally, the last acknowledgement of the transaction MAY contain out of band information related to the transaction.

For example, performance measurements.
• Concatenation MAY be used, where applicable, to convey multiple Protocol Data Units in one Service Data Unit of the

datagram transport.
• Message orientation. The basic unit of interchange is an entire message and not a stream of bytes.
• The protocol provides mechanisms to minimize the number of transactions being replayed as the result of duplicate

packets.
• Abort of outstanding transaction, including flushing of unsent data both in client and server. The abort can be triggered

by the user canceling a requested service.
• For reliable invoke messages, both success and failure is reported. If an invoke can not be handled by the Responder, an

abort message will be returned to the Initiator instead of the result.
• The protocol allows for asynchronous transactions. The Responder sends back the result as the data becomes available.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 13(71)Version 30-April-1998

5.2 Transaction Classes
The following subsections describes the transaction classes of WTP. The WTP provider initiating a transaction is referred to
as the Initiator. The WTP provider responding to a transaction is referred to as the Responder. The transaction class is set by
the Initiator and indicated in the invoke message sent to the Responder. Transaction classes can not be negotiated.

5.2.1 Class 0: Unreliable invoke message with no result message

Class 0 transactions provide an unreliable datagram service. It can be used by applications that require an "unreliable push"
service. This class is intended to augment the transaction service with the capability for an application using WTP to
occasionally send a datagram within the same context of an existing session using WTP. It is not intended as a primary
means of sending datagrams. Applications requiring a datagram service as their primary means of data delivery SHOULD
use WDP [WDP].

The basic behavior for class 0 transactions is as follows: One invoke message is sent from the Initiator to the Responder.
The Responder does not acknowledge the invoke message and the Initiator does not perform re-transmissions. At the
Initiator, the transaction ends when the invoke message has been sent. At the Responder, the transaction ends when the
invoke has been received. The transaction is stateless and can not be aborted.

5.2.2 Class 1: Reliable invoke message with no result message

Class 1 transactions provide a reliable datagram service. It can be used by applications that require a "reliable push" service.

The basic behavior for class 1 transactions is as follows: One invoke message is sent from the Initiator to the Responder.
The invoke message is acknowledged by the Responder. The Responder maintains state information for some time after the
acknowledgement has been sent to handle possible re-transmissions of the acknowledgement if it gets lost and/or the
Initiator re-transmits the invoke message. At the Initiator, the transaction ends when the acknowledgement has been
received. The transaction can be aborted at any time.

If the User acknowledgement function is enabled, the WTP user at the Responder confirms the invoke message before the
acknowledgement is sent to the Initiator.

5.2.3 Class 2: Reliable invoke message with one reliable result message

Class 2 transactions provide the basic invoke/response transaction service. One WSP session MAY consist of several
transactions of this type.

The basic behavior for class 2 transactions is as follows: One invoke message is sent from the Initiator to the Responder.
The Responder replies with exactly one result message that implicitly acknowledges the invoke message. If the Responder
takes longer to service the invoke than the Responder's acknowledgement timer interval, the Responder MAY reply with a
"hold on" acknowledgement before sending the result message. This prevents the Initiator from unnecessarily re-transmitting
the invoke message. The Responder sends the result message back to the Initiator. The result message is acknowledged by
the Initiator. The Initiator maintains state information for some time after the acknowledgement has been sent. This is done
in order to handle possible re-transmissions of the acknowledgement if it gets lost and/or the Responder re-transmits the
result message. At the Responder the transaction ends when the acknowledgement has been received. The transaction can at
any time be aborted.

If the User acknowledgement function is enabled, the WTP user at the Responder confirms the invoke message before the
result is generated. The WTP user at the Initiator confirms the result message before the acknowledgement is sent to the
Responder.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 14(71)Version 30-April-1998

5.3 Relation to Other Protocols
This chapter describes how WTP relates to other WAP protocols. For a complete description of the WAP Architecture refer
to [WAP]. The following table illustrates the where the services provided to the WTP user are located.

WTP User
(e.g. WSP)

WTP � Transaction handling
� Re-transmissions, duplicate removal, acknowledgements
� Concatenation and separation

[WTLS] � Optionally compression
� Optionally encryption
� Optionally authentication

 Datagram Transport
 (e.g. WDP)

� Port number addressing
� Segmentation and re-assembly (if provided)
� Error detection (if provided)

 Bearer Network
 (e.g. IP, GSM SMS/USSD, IS-136

GUTS)

� Routing
� Device addressing (IP address, MSISDN)
� Segmentation and re-assembly (if provided)
� Error detection (if provided)

WTP is specified to run over a datagram transport service. The WTP protocol data unit is located in the data portion of the
datagram. Since datagrams are unreliable, WTP is required to perform re-transmissions and send acknowledgement in order
to provide a reliable service to the WTP user. WTP is also responsible for concatenation (if possible) of multiple protocol
data units into one transport service data unit.

The datagram transport for WAP is defined in [WDP]. The datagram transport is required to route an incoming datagram to
the correct WDP user. Normally the WDP user is identified by a unique port number. Currently no datagram port number
has been allocated for WTP-WSP. The responsibility of WDP is to provide a datagram service to the WDP user, regardless
of the capability of the bearer network type. Fortunately, datagram service is a common transport mechanism, and most
bearer networks already provide such a service. For example, for IP-based utilize UDP for this service.

The bearer network is responsible for routing datagrams to the destination device. Addressing is different depending on the
type of bearer network (IP addresses or phone numbers). In addition, some networks are using dynamic allocation of
addresses, and a server has to be involved to find the current address for a specific device. Network addresses within the
WAP stack MAY include the bearer type and the address (e.g. ìIP; 123.456.789.123î). The multiplexing of data to and from
multiple bearer networks with different address spaces to the same WAP stack, has not been specified. WAP has specified
protocols above the datagram service boundary.

5.4 Security Considerations
WTP has no security mechanisms.

5.5 Management Entity
The WTP Management Entity is used as an interface between the WTP layer and the environment of the device. The WTP
Management Entity provides information to the WTP layer about changes in the devices environment, which MAY impact
the correct operation of WTP.

The WTP protocol is designed around an assumption that the environment in which it is operating is capable of transmitting
and receiving data. For example, this assumption includes the following basic capabilities that MUST be provided by the

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 15(71)Version 30-April-1998

mobile device:

• the mobile is within a coverage area applicable to the bearer service being invoked;
• the mobile having sufficient power and the power being on;
• sufficient resources (processing and memory) within the mobile are available to WTP;
• the WTP protocol is correctly configured, and ;
• the user is willing to receive/transmit data.

The WTP Management Entity monitors the state of the above services/capabilities of the mobile’s environment and would
notify the WTP layer if one or more of the assumed services were not available. For example if the mobile roamed out of
coverage for a bearer service, the Bearer Management Entity SHOULD report to the WTP Management Entity that
transmission/reception over that bearer is no longer possible. In turn, the WTP Management Entity would indicate to the
WTP layer to close all active connections over that bearer. Other examples such as low battery power would be handled in a
similar way by the WTP Management Entity.

In addition to monitoring the state of the mobile environment the WTP Management Entity MAY be used as the interface to
the user for setting various configuration parameters used by WTP, such as device address. It could also be used to
implement functions available to the user such as a ìdrop all data connectionsî feature. In general the WTP Management
Entity will deal with all issues related to initialization, configuration, dynamic re-configuration, and resources as they pertain
to the WTP layer.

Since the WTP Management Entity MUST interact with various components of a mobile device which are manufacturer
specific, the design and implementation of the WTP Management Entity is considered outside the scope of the WTP
Specification and is an implementation issue.

5.6 Static WTP Conformance Clause
This static conformance clause defines a minimum set of WTP features that can be implemented to ensure that the
implementation will be able to interoperate.

The features needed from WTP is dictated by the WTP user. In the case when WSP is the WTP user, it also depends on
whether the WSP protocol operates as a client or as a server. In the following table Mandatory (M) and Optional (O)
features of WTP are listed, in the case when WSP is the user.

Table 1 WTP Static Conformance Clause when WSP is the user
Function Type WSP Client WSP Server

Initiate M MTransaction Class 0
Respond M M
Initiate M MTransaction Class 1
Respond M M
Initiate M OTransaction Class 2
Respond O M

User Acknowledgement M M
Concatenation O O
Separation M M
Re-transmission until
acknowledgement

M M

Transaction Abort M M
Version handling M M
Error handling M M
Information in last
acknowledgement

M M

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 16(71)Version 30-April-1998

Function Type WSP Client WSP Server
Asynchronous transactions O O

Initiate O OTransaction Identifier Verification
Respond M M
Error M M
Info M M
Option O O

Transport Information Items

PSN O O
Segmentation And Re-assembly
with Selective re-transmission and
Packet Groups

O O

If the WTP provider is requested to execute a procedure it does not support, the transaction MUST be aborted with the an
appropriate error code. For example, a Responder not supporting class 2 receiving a class 2 transaction aborts the
transaction with the NOTIMPLEMENTEDCL2 abort code.

Segmentation and re-assembly (SAR) and selective re-transmission MAY be implemented in order to enhance the WTP
service. If SAR is not implemented in WTP, this functionality should be provided by another layer in the stack. For example,
in IS-136 the SSAR layer handles SAR, in an IP network IP [RFC791] handles SAR and for GSM SMS/USSD SAR is
achieved by using SMS concatenation [GSM0340]. The motivation for implementing WTP SAR is the selective re-
transmission procedure, which MAY, if large messages are sent, improve the over-the-air efficiency of the protocol.

Whether WTP SAR is supported or not is indicated by the Initiator when the transaction is invoked. The following table
shows how WTP Initiators and Responders SHOULD guarantee interoperability between WTP providers that have and
those that have not implemented WTP SAR.

Table 2 Interoperability between WTP Providers with and without WTP SAR
Initiator

Responder WTP SAR Not WTP SAR
WTP SAR Full interoperability Responder MUST NOT respond with

a WTP segmented message
Not WTP SAR Responder abort transaction with the abort code

NOTIMPLEMENTEDSAR
Initiator MUST re-send the transaction without using
WTP SAR

Full interoperability

Note 1) If a Responder not supporting WTP SAR receives a non-segmented message from an Initiator that supports WTP
SAR, there is no need to abort the transaction. The Initiator will never be aware of the fact that the Responder does not
support WTP SAR.

5.7 Other WTP Users
The intended use of this protocol is to provide WSP [WSP] with a reliable transaction service over an unreliable datagram
service. However, the protocol can be used by other applications with similar communication needs.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 17(71)Version 30-April-1998

6. Elements for Layer-to-Layer Communication

6.1 Notations Used

6.1.1 Definition of Service Primitives and Parameters

Communications between layers and between entities within the layer are accomplished by means of service primitives.
Service primitives represent, in an abstract way, the logical exchange of information and control between the transaction
layer and adjacent layers. They do not specify or constrain implementations.

Service primitives consist of commands and their respective responses associated with the services requested of another
layer. The general syntax of a primitive is:

X - Generic name . Type (Parameters)

where X designates the layer providing the service. For this specification X is:

"TR" for the Transaction Layer.

An example of a service primitive for the WTP layer would be TR-Invoke Request.

Service primitives are not the same as an application programming interface (API) and are not meant to imply any specific
method of implementing an API. Service primitives are an abstract means of illustrating the services provided by the
protocol layer to the layer above. The mapping of these concepts to a real API and the semantics associated with a real API
are an implementation issue and are beyond the scope of this specification.

6.1.2 Primitives Types

The primitives types defined in this specification are

Type Abbreviation Description
Request req Used when a higher layer is requesting a service from the next lower layer
Indication ind A layer providing a service uses this primitive type to notify the next higher

layer of activities related to the peer (such as the invocation of the request
primitive) or to the provider of the service (such as a protocol generated
event)

Response res A layer uses the response primitive type to acknowledge receipt of the
indication primitive type from the next lower layer

Confirm cnf The layer providing the requested service uses the confirm primitive type to
report that the activity has been completed successfully

6.1.3 Service Parameter Tables

The service primitives are defined using tables indicating which parameters are possible and how they are used with the
different primitive types. For example, a simple confirmed primitive might be defined using the following:

Primitive TR-primitive
Parameter req ind res cnf
Parameter 1 M M(=) - -
Parameter 2 - - O C(=)

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 18(71)Version 30-April-1998

In the example table above, Parameter 1 is always present in TR-primitive.request and corresponding TR-
primitive.indication. Parameter 2 MAY be specified in TR-primitive.response and in that case it MUST be present and
have the equivalent value also in the corresponding TR-primitive.confirm; otherwise, it MUST NOT be present.

If some primitive type is not possible, the column for it will be omitted. The entries used in the primitive type columns are
defined in the following table:

Table 3. Parameter Usage Legend
M Presence of the parameter is mandatory - it MUST be present

C Presence of the parameter is conditional depending on values of other parameters

O Presence of the parameter is a user option ñ it MAY be omitted

P Presence of the parameter is a service provider option ñ an implementation MAY not provide it

ñ The parameter is absent

* Presence of the parameter is determined by the lower layer protocol

(=) The value of the parameter is identical to the value of the corresponding parameter of the preceding
service primitive

6.2 Requirements on the Underlying Layer
The WTP protocol is specified to run on top of a datagram service. The datagram service MUST handle the following
functions:

• Port numbers to route the incoming datagram to the WTP layer;
• Length information for the SDU passed up to the WTP layer.

The datagram service MAY handle the following functions

• Error detection. For example, by using a checksum.

In addition, Segmentation And Re-assembly (SAR) is expected to be provided by the underlying layers. However, it is
usually done at a layer below the datagram layer. For example, in an IP network, the IP protocol handles SAR.

6.3 Services Provided To Upper Layer

6.3.1 TR-Invoke

This primitive is used to initiate a new transaction.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 19(71)Version 30-April-1998

Primitive TR-Invoke
Parameter req ind res cnf
Source Address M M (=)
Source Port M M (=)
Destination Address M M (=)
Destination Port M M (=)
Ack-Type M M (=)
User Data O C (=)
Class Type M M (=)
Exit Info O C (=)
Handle M M M M

6.3.1.1 Source Address

The source address is the unique address of the device making a request to the WTP layer. The source address
MAY be an MSISDN number, IP address, X.25 address or other identifier.

6.3.1.2 Source Port

The source port number associated with the source address.

6.3.1.3 Destination Address

The destination address of the user data submitted to the WTP layer. The destination address MAY be an MSISDN
number, IP address, X.25 address or other identifier.

6.3.1.4 Destination Port

The destination port number associated with the destination address for the requested or existing transaction.

6.3.1.5 Ack-Type

This parameter is used to turn the User acknowledgement function on or off.

6.3.1.6 User Data

The user data carried by the WTP protocol. The unit of data submitted to or received from the WTP layer is also
referred to as the Service Data Unit. This is the complete unit (message) of data which the higher layer has
submitted to the WTP layer for transmission. The WTP layer will transmit the Service Data Unit and deliver it to
its destination without any manipulation of its content.

6.3.1.7 Class Type

Indicates the WTP transaction class.

6.3.1.8 Exit Info

Additional user data to be sent to the originator on transaction completion.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 20(71)Version 30-April-1998

6.3.1.9 Handle

The transaction handle is an index returned to the higher layer so the higher layer can identify the transaction and
associate the data received with an active transaction. The TR-Handle uniquely identifies a transaction. TR-Handle
is an alias for the source address, source port, destination address, and destination port of the transaction.
The TR-Handle has local significance only.

6.3.2 TR-Result

This primitive is used to send back a result of a previously initiated transaction.

Primitive TR-Result
Parameter req ind res cnf
User Data O C (=)
Exit Info O C (=)
Handle M M M M

6.3.3 TR-Abort

This primitive is used to abort an existing transaction

Primitive TR-Abort
Parameter req ind
Abort Code O C (=)
Handle M M

6.3.3.1 Abort Code

The abort code indicates the reason for the transaction being aborted. This can include abort codes generated by the
WTP protocol and user defined local abort codes.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 21(71)Version 30-April-1998

7. Classes of Operation

7.1 Class 0 Transaction

7.1.1 Motivation

Class 0 is an unreliable datagram service. It can be used by WSP [WSP], for example, to make an unreliable ìpushî within a
session using the same socket association.

This class is intended to augment the transaction service with the capability for an application using WTP to occasionally
send a datagram within the same context of an existing session using WTP. It is not intended as a primary means of sending
datagrams. Applications requiring a datagram service SHOULD use WDP as defined in [WDP].

7.1.2 Protocol Data Units

The following PDU is used:
1. Invoke PDU

7.1.3 Procedure

A Class 0 transaction is initiated by the WTP user by issuing the TR-Invoke request primitive with the Transaction Class
parameter set to Class 0. The WTP provider sends the invoke message and becomes the Initiator of the transaction. The
remote WTP provider receives the invoke message and becomes the Responder of the transaction. The Initiator does not
wait for or expect a response. If the invoke message is received by the Responder it is accepted immediately. There is no
duplicate removal or verification procedure performed. However, the client MUST increment the TID counter between each
transaction, but the server MUST NOT update it's cached TID.

This transaction class MUST be supported by the WTP provider. The WTP provider MUST be able to act as both Initiator
and Responder.

An example of this class can be found in chapter 11.2.

7.2 Class 1 Transaction

7.2.1 Motivation

The Class 1 transaction is a reliable invoke message without any result message. This type of transaction can be used by
WSP [WSP] to realize a reliable "push" service.

7.2.2 Service Primitive Sequences

The following table describes legal service primitive sequences. A primitive listed in the column header MAY only be
followed by primitives listed in the row headers that are marked with an "X".

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 22(71)Version 30-April-1998

Table 4 Primitive Sequence Table for Transaction Class 1
TR-Invoke TR-Abort

req ind res cnf req ind
TR-Invoke.req
TR-Invoke.ind
TR-Invoke.res X
TR-Invoke.cnf X
TR-Abort.req X X X
TR-Abort.ind X X X

7.2.3 Protocol Data Units

The following PDUs are used:
1. Invoke PDU
2. Ack PDU

7.2.4 Procedure

A Class 1 transaction is initiated by the WTP user by issuing the TR-Invoke request primitive with the Transaction Class
parameter set to Class 1. The WTP provider sends the invoke message and becomes the Initiator of the transaction. The
remote WTP provider receives the invoke message and becomes the Responder of the transaction. The Responder checks
the Transaction Identifier and determines whether a verification has to be initiated. If not, it delivers the message to the user
and returns the last acknowledgement to the Initiator. The Responder MUST keep state information in order to re-transmit
the last acknowledgement if it gets lost.

This transaction class MUST be supported by the WTP provider. The WTP provider MUST be able to act as both Initiator
and Responder.

An example of this class can be found in chapter 11.3.

7.3 Class 2 Transaction

7.3.1 Motivation

The Class 2 transaction is the basic request/response transaction service. This is the most commonly used transaction
service. For example, it is used by WSP [WSP] for method invocations.

7.3.2 Service Primitive Sequences

The following table describes legal service primitive sequences. A primitive listed in the column header MAY only be
followed by primitives listed in the row header that are marked with an "X".

Table 5 Primitive Sequence Table for Transaction Class 2
TR-Invoke TR-Result TR-Abort

req ind res cnf req ind res cnf req ind
TR-Invoke.req
TR-Invoke.ind
TR-Invoke.res X
TR-Invoke.cnf X
TR-Result.req X* X

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 23(71)Version 30-April-1998

TR-Invoke TR-Result TR-Abort
req ind res cnf req ind res cnf req ind

TR-Result.ind X* X
TR-Result.res X
TR-Result.cnf X
TR-Abort.req X X X X X X X
TR-Abort.ind X X X X X X X

* = NOT valid if User acknowledgement is used (see separate section).

7.3.3 Protocol Data Units

The following PDUs are used:
1. Invoke PDU
2. Result PDU
3. Ack PDU
4. Abort PDU

7.3.4 Procedure

A Class 2 transaction is initiated by the WTP user by issuing the TR-Invoke request primitive with the Transaction Class
parameter set to Class 2. The WTP provider sends the invoke message and becomes the Initiator of the transaction. The
remote WTP provider receives the invoke message and becomes the Responder of the transaction. The Responder checks
the Transaction Identifier and determines whether a verification has to be initiated. If not, it delivers the message to the WTP
user and wait for the result. The Responder MAY send a hold on acknowledgement after a specified time.

The WTP user sends the result message by issuing the TR-Result request primitive. When the Initiator has received the
result message it returns the last acknowledgement to the Responder. The Initiator MUST keep state information in order to
re-transmit the last acknowledgement if it gets lost.

If the Responder does not support this transaction class it returns an Abort PDU with the abort reason
NOTIMPLEMENTEDCL2 as a response to the invoke message.

An example of this class can be found in chapter 11.4.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 24(71)Version 30-April-1998

8. Protocol Features

8.1 Message Transfer

8.1.1 Description

WTP consists of two types of messages: data messages and control messages. Data messages carry user data. Control
messages are used for acknowledgements, error reporting, etc. and do not carry user data. This section gives the reader an
overall picture of how transactions are realized by WTP. The procedures to guarantee reliable message transfer are outlined.
Special functions like concatenation and separation, re-transmission until acknowledgement, transaction abort, user
acknowledgement, and others are described in further detail in separate sections.

It is important to note that not all messages and functions are used by all transaction classes. The following table illustrates
which messages are used for the different transaction classes.

Table 6 Summary of WTP message transfer
Message/function Class 2 Class 1 Class 0
Invoke message X X X (Note 2)
Verification X X
Hold on acknowledgement X (Note 1)
Result message X
Last acknowledgement X X

Note 1) Only sent in the case when the user takes longer time to service the invoke message than the Responder's
acknowledgement timer interval.

Note 2) The class 0 transaction is unreliable. No response is expected from the Responder and no verification is performed.

8.1.2 Service Primitives

The following service primitives are used during nominal WTP transactions. Their use is transaction class dependent:
1. TR-Invoke
2. TR-Result

8.1.3 Transport Protocol Data Units

The following PDUs are used during nominal WTP transactions. It is important to note that not all PDUs are used in every
transaction class.

1. Invoke PDU
2. Result PDU
3. Ack PDU

8.1.4 Timer Intervals and Counters

The following timer intervals and counters are used during a nominal WTP transaction. Their use is transaction class
dependent.

1. Re-transmission interval
2. Re-transmission counter
3. Acknowledgment interval
4. Wait timeout interval

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 25(71)Version 30-April-1998

The values and relations between timer intervals and counters MAY depend on the transaction class being used. A detailed
description of timers and counters is provided in a separate section.

8.1.5 Procedure

A transaction takes place between two WTP providers. A WTP user initiates a transaction by issuing the TR-Invoke request
primitive. The TCL parameter of the primitive indicates the transaction class: 0, 1 or 2. In WTP, the Initiator is the WTP
provider initiating the transaction and the Responder is the WTP provider responding to the initiated transaction.

8.1.5.1 Invoke message

The invoke message is always the first message of a transaction and it is sent using the Invoke PDU. The Initiator
administers the Transaction Identifier (TID) by incrementing the TID by one for every initiated transaction. The TID is
conveyed in every PDU belonging to the transaction. When the Invoke PDU has been sent the Initiator starts the re-
transmission timer and waits for a response. When the Responder receives the Invoke PDU with a valid TID, it delivers the
message to the user by generating the TR-Invoke indication primitive.

8.1.5.2 Verification

When the Responder has received and accepted the invoke message it SHOULD cache the TID. This is done in order to
filter out duplicate and old invoke messages that have lower or identical TID values (see section on Transaction Identifier).
If the Responder determines the TID in the Invoke PDU is invalid, the Responder can verify whether the invoke message is
a new or delayed message. This is accomplished by sending an Ack PDU which initiates a three way handshake towards the
Initiator (see section on TID Verification). In this case, the Responder MUST NOT deliver the data to the user until the
three way handshake is successfully completed. If the three way handshake attempt fails, the transaction is aborted by the
Initiator.

8.1.5.3 Hold on acknowledgement

When the invoke message has been delivered to the WTP user, the acknowledgement timer is started. If the WTP user
requires more time to service the invoke message than the acknowledgement timer interval, the Responder MAY or
SHOULD or MUST send a ìhold onî acknowledgement. This is done to prevent the Initiator from re-transmitting the Invoke
PDU. When the Initiator receives the Ack PDU it stops re-transmitting the Invoke PDU and generates the TR-Invoke
confirm primitive.

8.1.5.4 Result message

Upon assembling the data, the WTP user sends a result message by initiating the TR-Result request primitive. The result
message is transmitted using the Result PDU. When the Result PDU has been sent the Responder starts the re-transmission
timer and waits for a response. After the Result PDU is received by the Initiator it generates the TR-Invoke confirm
primitive if one has not already been issued and the forwards up the TR-Result indication primitive.

8.1.5.5 Last acknowledgement

The last Ack PDU is sent when the last message of the transaction has been received. The sender of the acknowledgment
MUST maintain state information required to handle a re-transmission of the previous message. This can be done by using a
wait timer, or by keeping a transaction history that indicates the results of past transactions.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 26(71)Version 30-April-1998

8.2 Re-transmission Until Acknowledgement

8.2.1 Motivation

The re-transmission until acknowledgement procedure is used to guarantee reliable transfer of data from one WTP provider
to another in the event of packet loss. To minimize the number of packets sent over-the-air, WTP uses implicit
acknowledgements wherever possible. An example of this is the use of the Result message to implicitly acknowledge the
Invoke message.

8.2.2 Transport Protocol Data Units

The following PDUs are used:
1. Invoke PDU
2. Result PDU
3. Ack PDU

8.2.3 Timer Intervals and Counters

The following timer intervals and counters are used:
1. Re-transmission interval
2. Re-transmission counter

The values and relationships between timers and counters MAY depend on the transaction class being used. A detailed
description of timers and counters is provided in a separate section.

8.2.4 Procedure

When a packet has been sent, the re-transmission timer is started and the re-transmission counter is set to zero. If a response
has not been received when the re-transmission timer expires, the re-transmission counter is incremented by one, the packet
re-transmitted, and the re-transmission timer re-started. The WTP provider continues to re-transmit until the number of re-
transmissions has exceeded the maximum re-transmission value. If no acknowledgement has been received when the
retransmission counter is fully incremented and the timer expires, the transaction is terminated and the local WTP user is
informed.

The first time a PDU is transmitted the re-transmission indicator (RID) field in the header is clear. For all re-transmissions
the RID field is set. Other than the RID field, the WTP provider MUST NOT change any fields in the PDU header.

The motivation for the re-transmission indicator is for the receiver to detect messages that have been duplicated by the
network. A WTP provider that receives two identical messages with the RID set to zero, can safely ignore the second
message because it must have been duplicated by the network. Any subsequent retransmissions that have the RID flag set to
one can not be ignored by the receiver. Re-transmitted messages that gets duplicated by the network must be treated as valid
messages by the provider. The receiver in this situation can no longer distinquish between provider retransmissions and
network duplicated packets. In this case, if the message is an Invoke PDU, there is a risk that the transaction will be re-
played. To avoid such an error, the WTP provider should make a TID validation (see chapter 8.8).

8.3 User Acknowledgement

8.3.1 Motivation

The User Acknowledgement function allows for the WTP user to confirm every message received by the WTP provider.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 27(71)Version 30-April-1998

When this function is enabled, the WTP provider does not respond to a received message until after the WTP user has
confirmed the indication service primitive (by issuing the response primitive). If the WTP user does not confirm the
indication primitive after a specified time, the transaction is aborted by the provider. Note that this is a much stronger form
of a confirmed service than the traditional definition [ISO8509]. The traditional definition of a confirmed service is that
there is a confirmation from the service provider, however, there is not necessarily any relationship to a response from the
peer service user. In WTP, when the User Acknowledgement function is used, the service provider requires a response from
the service user for each indication. As a result, when the confirmation primitive is generated, there is a guarantee that there
was a response from the peer service user.

This function is optional within WTP however WSP does utilize the User Acknowledgement feature and therefore any
implementation of WTP that will have WSP as the higher layer, must implement it (see 5.6). WSP requires a feature that at
the end of a request-response transaction, the server gets a positive indication that the client has processed the response. This
is illustrated below.

Request

Response Data

Acknowledgement

Client Server

Figure 1 Generic WSP [WSP] transaction

In this model, the Acknowledgment is used to convey the fact that the response was received and processed by the client
application. It is important to note that the Client and the Server in the figure refers to the client and server Application , and
not only the protocol stack.

When the User Acknowledgement function is used the WSP -WTP primitive sequence for a Class 2 transaction becomes as
illustrated below.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 28(71)Version 30-April-1998

WTPWSP WSP
S-Method.req

TR-Invoke.req TR-Invoke.ind S-Method.ind

S-Method.resTR-Invoke.resTR-Invoke.cnfS-Method.cnf

S-Reply.reqTR-Result.reqTR-Result.indS-Reply.ind

S-Reply.res
TR-Result.res TR-Result.cnf S-Reply.cnf

Client Server

Figure 2 WSP-WTP primitive sequence for request-response

The primitive sequence started by the S-Reply.res and TR-Result.res primitives realizes the Complete and Confirm
primitives from Figure 1. If the application and/or the WSP for some reason does not issue these primitives, WTP aborts the
transaction with the NORESPONSE reason. The abort is used by the WSP server as an indication that the result was not
properly received or processed by the client.

The primitive sequence started by the S-Method.res and TR-Invoke.res primitives can be used by the client WSP to indicate
to the application (and human user) that the invoke message has been received by the server WSP.

When this function is not used, WTP MAY acknowledge received messages independently of the WTP user. In Figure 2 this
means that the response primitives MAY be ignored by the WTP provider. Put in other words: the WTP provider receives a
message, returns an acknowledgement and indicates to the user that a message has been received. If there is an error, the
transaction will be aborted by the WTP provider. If the WTP user is alive but can not process the message it MAY abort the
transaction with an appropriate abort reason.

This function is optional. It applies to transaction class 1 and 2.

Note) Even though the WTP user has issued a response primitive there is no guarantee that it has interpreted the data and
started processing. The WTP user MAY have only copied the data from one buffer to another, or issued the response
primitive without any action taken at all. A WTP user can always abort a transaction if it discovers that the received
data is corrupt or for some other reason not possible to process (see section on Transaction abort).

8.3.2 Protocol Data Units

The following PDUs are used:
1. Invoke PDU
2. Abort PDU

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 29(71)Version 30-April-1998

8.3.3 Procedure

The Initiator sets the U/P-flag in the Invoke PDU to indicate that User acknowledgement is required. A Responder not
supporting this function aborts the transaction with the abort reason NOTIMPLEMENTEDUACK. The Initiator MAY then
take the decision to re-initiate the transaction without the User acknowledgement function.

When the Responder receives the Invoke PDU with the U/P-flag set it generates the TR-Invoke indication and starts the
acknowledgement timer. To give the WTP user time to read the parameters in the indication primitive and issue the TR-
Invoke response primitive, the value of the timer MAY have a higher value than the provider’s acknowledgement timer (see
definitions of default timer values). The Responder MUST NOT return a response before the WTP user has issued the TR-
Invoke response primitive. If the Initiator re-transmits Invoke PDUs due to lack of acknowledgement, the Responder MUST
silently discard the PDU and restart the acknowledgement timer. When the WTP user issues the TR-Invoke response
primitive, the Responder is enabled to send the Ack PDU. If the TR-Invoke response primitive has not been issued after a
specified time, the provider aborts the transaction with the abort reason NORESPONSE. If the WTP user issues the TR-
Result request primitive, the result is sent instead of the acknowledgement. The Initiator receiving the Ack PDU generates
the confirm primitive which indicates that the remote WTP user has issued the corresponding response primitive.

For class 2 transactions, if the Initiator has indicated that the User Acknowledgement function shall be used, it is valid for
the entire transaction. This means that when the Initiator has received the result and generated the TR-Result indication
primitive it MUST wait for the TR-Result response primitive from the WTP user before the last acknowledgement can be
sent. If the TR-Result response primitive has not been issued after a specified time, the provider aborts the transaction with
the abort reason NORESPONSE. When the Responder receives the NORESPONSE abort it generates the TR-Abort
indication primitive, indicating to the WTP user that the transaction failed.

8.4 Information In Last Acknowledgement

8.4.1 Motivation

The WTP user is allowed to attach information in the last, and only the last, acknowledgement of a transaction. This
function is meant for transporting small amounts of information related to the transaction. The information can be, for
example, performance measurements collected in order to evaluate the userís perceived quality of service.

For class 2 transactions, this function can be used by the Initiator to communicate some information back to the Responder.
For a class 1 transaction, this function can be used by the Responder to communicate some information to the Initiator.

8.4.2 Service Primitives

The following service primitives and parameters are used:
1. TR-Result.res (Class 2)
2. TR-Invoke.res (Class 1)

8.4.3 Protocol Data Units

The following PDU is used:
1. Ack PDU

8.4.4 Procedure

For a class 2 transaction, information is attached to the last acknowledgement by issuing the TR-Result response primitive
with the ExitInfo parameter.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 30(71)Version 30-April-1998

For a class 1 transaction, information is attached to the last acknowledgement by issuing the TR-Invoke response primitive
with the ExitInfo parameter.

The exit information is transferred as a Transport Information Item (TPI) in the variable part of the Ack PDU header.

For class 2 transactions, the ExitInfo parameter MUST NOT be included in the TR-Invoke response primitive and the Info
TPI MUST NOT be included in the Ack PDU that acknowledges the Invoke PDU.

8.5 Concatenation and Separation

8.5.1 Motivation

Concatenation is the procedure to convey multiple WTP Protocol Data Units (PDUs) in one Service Data Unit (SDU) of the
bearer network. When concatenation is done, a special mapping of the WTP PDUs to the SDUs is used. This is described in
chapter 9.

Separation is the procedure to extract multiple PDUs from one SDU. When the PDUs have been separated they are
dispatched to the transactions.

Concatenation and separation is used to provide over-the-air efficiency, since fewer transmissions over the air are required.

8.5.2 Procedure

Concatenation can only be done for messages with the same address information (source and destination port, source and
destination device address).

Concatenation of PDU from different transactions can be done at any time. For example, the last acknowledgement of one
transaction can be concatenated with the invoke message of the next transaction. Concatenation and separation is performed
outside the WTP state machine.

The exact implementation of concatenation is not specified. Only the structure to be used when multiple packets are
concatenated is specified. Exactly how the packets are buffered and concatenated is an implementation issue.

8.6 Asynchronous Transactions

8.6.1 Motivation

The implementation of the WTP provider SHOULD be able to initiate multiple transactions before it receives the response
to the first transaction. Multiple transactions SHOULD be handled asynchronously. For example, the responses to
transaction number 1, 2 and 3 MAY arrive to the Initiator as 3, 1 and 2. The Responder SHOULD send back the result as
soon as it is ready, independently of other transactions.

The maximum number of outstanding transactions at any moment is limited by the maximum number of Transaction
Identifiers. The Transaction Identifier is 16 bits, but the high order bit is used to indicate the direction of the message, so the
maximum number of outstanding transactions is 2**15. The implementation environment will also set a limit to how many
outstanding transactions it can handle simultaneously.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 31(71)Version 30-April-1998

8.7 Transaction Abort

8.7.1 Motivation

An outstanding transaction can be aborted by the WTP user by issuing the TR-Abort request primitive. The user abort can
be triggered by the application (e.g. input from human user) or it can be a negative result (e.g. the WTP user could not
generate a result due to an error).

An outstanding transaction can also be aborted by the WTP provider due to a protocol error (e.g. reject the received data) or
if a requested function is not implemented.

This function MUST be used with care. If the invoke message has already been sent, the response message MAY be on its
way to the client and an abort will only increase network load.

8.7.2 Transport Protocol Data Units

The following PDU is used:
1. Abort PDU

8.7.3 Service primitives

The following service primitive is used:
1. TR-Abort

8.7.4 Procedure

There are three special cases of the abort procedure:
A) The sending WTP provider has not yet sent the message: the provider MUST discard the message from its memory.
B) The sending WTP provider has sent the message to the peer, or is in the process of sending the message: the provider

MUST send the Abort PDU to the remote peer to discard all data associated with the transaction.
C) The receiving provider receives the Abort PDU: it generates the TR-Abort indication primitive and discards all

transaction data.

When an Abort PDU is sent the reason for the abort is indicated in the abort reason field. There are two main types of
aborts: User abort (USER) and Provider abort (PROVIDER). The user abort occurs when the WTP user has issued the TR-
Abort request primitive. The provider abort occurs when there is an error in the WTP provider.

8.8 Transaction Identifier

8.8.1 Motivation

A transaction is uniquely identified by the socket pair (source address, source port, destination address and destination port)
and the Transaction Identifier (TID). The Initiator increments the TID by one for every initiated transaction. This means that
TIDs 1, 2 and 3 can go to server A, TIDs 4, 5 and 6 to server B and TIDs 7, 8 and 9 to server A.

The main use of the TID is to identify messages belonging to the same transaction. When a message is re-transmitted the
TID is reused for the re-transmitted messages. A Responder MAY choose to remember the TID after an invoke message has
been accepted and force TID verification in order to avoid replaying transactions. Also, the Initiator increments the TID by
one for each transaction. This information can be used by the Responder to filter out new invoke messages from old and
duplicated invoke messages: a new invoke always has a higher TID value.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 32(71)Version 30-April-1998

Since transactions can be initiated simultaneously from both directions on the same socket association, the high order bit of
the TID is used to indicate the direction of the transaction. The Initiator sets the high order bit to 0 in the Invoke PDU.
Thereafter the high order bit is always inverted in the received TID before it is added to the response packet. By setting the
high order bit of the TID field to 0 at the Initiator and 1 at the Responder, the Initiator can be guaranteed that the allocated
TID will not collide with the remote entity.

The TID is 16-bits but the high order bit is used to indicate the direction. This means that the TID space is 2**15. The TID
is an unsigned integer.

8.8.2 Procedure at the Responder

8.8.2.1 Variables

If the Responder caches old TID values for each different Initiator the old TID value is called LastTID. The TID in the
received invoke message is called RcvTID.

8.8.2.2 Decisions when receiving a new invoke message

When the Responder receives an invoke message it takes one of the following actions depending on whether the Responder
is caching old TID values or not, the characteristics of the underlying transport and the outcome of the TID test (described in
the following chapter):

Table 7 Decisions when receiving new invoke message
Event Condition Action
TID test Fail Underlying transport service can guarantee there are no

duplicates (Note 1)
Start transaction

Underlying transport service can NOT guarantee there are
no duplicates

Invoke TID verification

TID test Ok LastTID = RcvTID
Start transaction

TIDnew flag set LastTID = 0
Invoke TID verification

No cache Responder caches the TID for each Initiator for the
Maximum Packet Lifetime (MPL) of the network and it
has not been re-booted during this time period and lost the
information. If the invoke was not a new one, the
Responder would have had the latest TID in itís cache.

Create new record for this Initiator
LastTID = RcvTID
Start transaction

Responder does not cache TIDs (Note 2) Invoke TID verification

Note 1) This is the case, for example, if a security layer is located under WTP and that can remove duplicates.
Note 2) This is not very efficient and SHOULD be avoided.

8.8.2.3 The TID test

One method of validating the TID is to use a window mechanism. The Responder MAY cache the last valid TID (LastTID)
from each different Initiator. When the Responder receives a new invoke message it compares the TID in the invoke
message (RcvTID) with the cached one. Let W be the size of the window. If W=2**14, it means that the boundary between
two TID values occurs when they differ by 2**14, that is, half the TID space.

Table 8 TID test; RcvTID >= LastTID
RcvTID >= LastTID

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 33(71)Version 30-April-1998

| RcvTID - LastTID | TID test
0 Fail

<= W Ok
> W Fail

Table 9 TID test; RcvTID < LastTID
RcvTID < LastTID

| RcvTID - LastTID | TID test
< W Fail (see 8.8.2.4)

>= W Ok

The above tables shows different results from the TID test. If the test succeeds it is guaranteed that the received invoke
message is new and not an old delayed one. This is under the assumption that all messages have a Maximum Packet Lifetime
(MPL), and that after MPL seconds it is guaranteed that there are no duplicate messages present in the network (see Note).
Furthermore, it is assumed that the TID is not incremented faster than 2**14 steps in 2*MPL.

Note) For some networks types, the average Maximum Packet Lifetime MAY have a very high variance. For example, in a
store-and-forward network like GSM SMS, a short message MAY reside in the SMS-C for a very long time, before it
gets delivered to the destination. This fact MAY in some cases violate the correctness of the TID validation.

8.8.2.4 Reception of out-of-order invoke messages

Messages can arrive out-of-order. This means that even if the Initiator increments the TID by one for each transaction, a
transaction with a lower TID value can arrive after a TID with a higher value. This MAY cause the TID test to fail and a
TID verification to be started. This will not break the protocol, however, it will lead to degraded performance. One way to
overcome this is to keep an array of TID values for past transactions. If the received TID is not in the array it can be
accepted without any TID verification. This solution improves performance, but requires the Responder to maintain more
information.

8.8.3 Procedure at the Initiator

8.8.3.1 Administration of TID

The Initiator is responsible for incrementing the TID by one for each transaction. This MUST NOT be done faster than
2**14 steps in 2*MPL.

8.8.3.2 Violating the monotonic property of the TID

There are cases when the Initiator MAY generate non-monotonic TID values, that is, the next TID MAY be smaller than the
previous:

1. The Initiator has crashed and re-booted and randomly picked a smaller TID value than the previous.
2. The TID values have wrapped around the finite space. This can happen if, for example, the Initiator sends a transaction

to Responder A, then sends 2**14 transactions to Responder B and finally returns to Responder A. The cached TID
value at Responder A for this Initiator will now be smaller than current TID.

Neither of these two cases will break the protocol. However, TID verifications will be invoked and that will lead to lower
efficiency.

In (1), if the Responder discards cached TID values after MPL seconds and the time to re-boot takes longer than that, the
Responder will accept the new TID value without a TID verification (see 8.8.2.2). We have assumed that it will take longer

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 34(71)Version 30-April-1998

time than 2*MPL to increment the TID 2**14 steps. However, if the Responder caches the TID value longer than for MPL
seconds it will initiate a TID verification in this case.

The wraparound in (2) will be detected only if the Initiator caches the last sent TID to each Responder.

In both (1) and (2) excessive use of the TID verification mechanism SHOULD be avoided by setting the TIDnew flag in the
Invoke PDU. This will invalidate the Responder's cached TID for the Initiator (see 8.8.2.2). When the Initiator uses the
TIDnew flag it MUST NOT initiate any subsequent transaction until the TID verification has been completed. The reason
for this is that the TIDnew MAY be delayed in the network. If, during that time period, transactions with higher TID are
initiated, duplicates from these will get erroneously accepted when Responder has updated its cache with the lower TID in
the TIDnew packet.

8.9 Transaction Identifier Verification

8.9.1 Motivation

The transaction identifier verification procedure is a three-way handshake. A three-way handshake between an Initiator (I)
and a Responder (R) has the following steps:

(1) I Æ R This is the TID (Invoke PDU)
(2) I Å R Do you have an outstanding transaction with this TID? (Ack PDU)
(3) I Æ R Yes/No! (Ack PDU / Abort PDU)

The TID verification procedure is necessary to guarantee that the same invoke message is not accepted and delivered to the
WTP user more the once, due to old duplicate packets.

The invoke message MUST NOT be delivered to the user before the TID verification procedure is completed successfully.

8.9.2 Protocol Data Units

The following PDUs are used:
1. Invoke PDU
2. Ack PDU
3. Abort PDU

8.9.3 Procedure

In the event that the Responder has received an Invoke PDU from an Initiator and has decided, using the rules for the
Transaction Identifier procedure, to verify the TID, the following process is used.

The Responder sends an Ack PDU with Tve flag set indicating that it has received an invoke message with this TID.

When the Initiator receives the Ack PDU from the Responder it checks whether it has a corresponding outstanding
transaction with this TID. In this case, the Initiator sends back an Ack PDU with TIDok flag set indicating that the TID is
valid. This completes the three way handshake. If the Initiator does not have a corresponding outstanding transaction, it
MUST abort the transaction by sending an Abort PDU with the Abort reason INVALIDTID.

Depending on the outcome of the TID verification WTP SHOULD take different actions. These are listed in the below
table.

Table 10 Actions depending on result of TID verification
Result of TID verification Condition Action

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 35(71)Version 30-April-1998

Result of TID verification Condition Action
Valid TID TIDnew == True Start transaction

LastTID = RcvTID
TIDnew == False Start transaction

LastTID = LastTID
Invalid TID Abort transaction

The TIDnew flag is set in the invoke message and is used by the Initiator to invalidate the Responder's cache.

An example of this procedure can be found in chapter 11.5.

8.10 Transport Information Items (TPIs)

8.10.1 Motivation

The variable portion of the header in a WTP PDU MAY consist of Transport Information Items (TPIs). If not, the variable
part of the header MUST be empty. The use of TPIs allows for future extensions of the protocol.

8.10.2 Procedure

All TPIs follow the general structure: TPI identity, TPI length and TPI data; the length can be zero. The following table lists
the currently defined TPI and in which section they are explained:

Table 11 WTP Transport Information Items (TPIs)
Transport Information Item Described in section
Error "Transport Information Items (TPIs)" section 8.10
Info "Information in Last Acknowledgement" section 8.4
Option "Transmission of Parameters" section 8.11
Packet Sequence Number "Segmentation and Re-assembly" section 8.14

All TPIs are optional except for the Error TPI which is used to inform the sender if an unsupported or erroneous TPI was
received. Consequently, a WTP provider MUST be able to recognize the general TPI structure in order to skip an
unsupported TPI and report back to the sender.

When a WTP provider receives a TPI that is not supported, the WTP provider returns the Error TPI with the ErrorCode
indicating "Unknown TPI" along with the identity of the unsupported TPI. When a WTP provider receives a supported TPI,
but fails to understand the content of the TPI, the WTP provider returns the Error TPI with the ErrorCode indicating
"Known TPI, unknown content", and the identity of the TPI and the first octet of the content included as argument.

8.11 Transmission Of Parameters

8.11.1 Motivation

Protocol parameters can be transmitted between two WTP providers by using the Option TPI in the variable part of the PDU
header.

No mandatory parameters have been defined.

Optional parameters used by the segmentation and re-assembly function are listed in 9.4.4.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 36(71)Version 30-April-1998

8.11.2 Procedure

A WTP provider MAY support only a subset of all parameters. The parameters are transported in the variable part of the
PDU header by using the Option TPI. The first octet of the Option TPI identifies the parameter and the following octets
contains the value of the parameter. A WTP provider not supporting a parameter ignores it and returns the Error TPI.

8.12 Error Handling

8.12.1 Motivation

When an unrecoverable error is detected during the transaction, the transaction MUST be aborted. Currently no recovery
mechanisms have been defined.

8.12.2 Protocol Data Units

The following PDU is used:
1. Abort PDU

8.12.3 Procedure

When an error occurs in the WTP provider during a transaction, the transaction MUST be aborted with an appropriate Abort
reason and the local WTP user informed. The abort procedure is described in a separate section.

8.13 Version Handling

8.13.1 Motivation

A WTP provider receiving an invoke message with a higher version number than what is supported MUST abort the
transaction.

8.13.2 Protocol Data Units

The following PDUs and parameters are used:
1. Invoke PDU
2. Abort PDU

8.13.3 Procedure

The Initiator indicates its version in the version field of the Invoke PDU.

If the Responder does not support the version it MUST return an Abort PDU with the Abort Reason set to
WTPVERSIONONE. This indicates that the WTP provider supports version one of the WTP protocol.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 37(71)Version 30-April-1998

8.14 Segmentation and Re-assembly (Optional)

8.14.1 Motivation

If the length of a message exceeds the MTU for the current bearer, the message can be segmented by WTP and sent in
several packets. When a message is sent as a large number of small packets, the packets MAY be sent and acknowledged in
groups. The sender can exercise flow control by changing the size of the packet groups depending on the characteristics of
the network.

Selective re-transmission allows for a receiver to request one or multiple lost packets. The alternative is for the sender to re-
transmit the entire message, which MAY include packets that have been successfully received. This function minimizes the
number of packets sent by WTP.

This function is optional. If SAR is not implemented in WTP, this functionality has to be provided by another layer in the
stack. For example, in IS-136 the SSAR layer handles SAR, in an IP network IP [RFC791] handles SAR and for GSM
SMS/USSD SAR is achieved by using SMS concatenation [GSM0340]. The motivation for implementing WTP SAR is the
selective re-transmission procedure, which MAY, if large messages are sent, improve the over-the-air efficiency of the
protocol.

An example of this procedure can be found in chapter 11.6.

8.14.2 Procedure for Segmentation

For the sake of brevity only the procedure to segment an invoke message is described here (segmentation of a result message
is identical except for the names of the PDUs.)

An invoke message which exceeds the MTU for the network is segmented into an ordered sequence of one Invoke PDU
followed by one or more Segmented Invoke PDUs. The initial Invoke PDU has the implicit packet sequence number of zero,
the following Segmented Invoke PDU has the packet sequence number one and all the following Segmented Invoke PDUs
have packet sequence number that is one greater than the previous (n, n+1, n+2, etc). The Invoke PDU has an "implicit"
packet sequence number since this number is not included as a field in the header. The client indicates in the Invoke PDU if
the invoke message is segmented by clearing the TTR flag. If the invoke message is segmented, the server counts the Invoke
PDU as packet number zero and waits for the following Segmented Invokes PDUs. The packet sequence number MUST
NOT wrap. The packet sequence number field is 8 bits; and thus the maximum number of packets is 256.

8.14.3 Procedure for Packet Groups

The packets (Segmented Invoke PDUs and/or Segmented Result PDUs) are sent and acknowledged in groups. The sender
MUST NOT send any new packets belonging to the same transaction until the previous packet group has been
acknowledged. That is, packet groups are sent according to a stop-and-wait protocol. The sender determines the number of
packets for each packet group. The size of a packet group SHOULD be decided with regards to the characteristics of the
network and the device. No procedure for determining packet group size has been defined.

The packets in a packet group are sent in one batch. The last packet of the group has the GTR flag set. The last packet of the
last packet group of the entire message has the TTR flag set. Since the first group is sent without knowing the status of the
receiver the number of packets SHOULD not be too large. When the receiver receives a packet that is not a GTR or TTR
packet it MUST store the packet and wait for a new one.

When the receiver receives a packet with the GTR flag set it MUST check whether it has received all packets belonging to
that packet group. If the complete packet group has been received the receiver returns an Ack PDU with the PSN TPI
containing the Packet Sequence Number of the GTR packet. If one or more packets are missing the receiver returns a Nack
PDU including the sequence number(s) of missing packet(s). The missing packets are re-transmitted with the original Packet
Sequence Numbers but with the Re-transmission Indicator flag set. When the receiver has received the complete packet
group, including those that were re-transmitted, it acknowledges the GTR packet.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 38(71)Version 30-April-1998

When the receiver has received a complete packet group and the last packet has the TTR flag set, it SHOULD be able to re-
assemble the complete message.

If the sender has not received an acknowledgment when the re-transmission timer expires, only the GTR/TTR packet is re-
transmitted, not the entire packet group.

8.14.4 Procedure for Selective Re-transmission

When a GTR or TTR packet has been received and one or more packets of the packet group are missing, the WTP provider
returns the Nack PDU with the sequence number of the missing packet(s). For example, if the receiver has received packet
number 2, 3, 5 and 7, and packet number 7 has the GTR flag set, it returns a Nack PDU with packet numbers 4 and 6,
indicating missing packets. The packet sequence number of the missing packets are contained in the header part of the Nack
PDU.

If the Nack PDU is received with the number of missing packets field set to zero, this means that the entire packet group
shall be re-transmitted.

The missing packets are re-transmitted with the original Packet Sequence Numbers. When the sender has re-transmitted the
requested packets, it reverts to wait for the original acknowledgement (for the GTR or TTR packet).

When the receiver has received all packets it acknowledges the GTR or TTR packet according to the normal procedure,
using the Ack PDU.

A WTP provider not supporting this function MUST re-transmit the entire message when one or multiple packets are
requested for re-transmission.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 39(71)Version 30-April-1998

9. Structure and Encoding of Protocol Data Units

9.1 General
A Protocol Data Unit, PDU, contains an integer number of octets and consists of:

a) the header, comprising:
1. the fixed part
2. the variable part

b) the data, if present

The fixed part of the headers contains frequently used parameters and the PDU code. The length and the structure of the
fixed part are defined by the PDU code. The following PDU types are currently defined:

Table 12 WTP PDU Types
PDU Type PDU Code
* NOT ALLOWED * 0x00 (Note 1)
Invoke 0x01
Result 0x02
Ack 0x03
Abort 0x04
Segmented Invoke 0x05 (Note 2)
Segmented Result 0x06 (Note 2)
Negative Ack 0x07 (Note 2)

The variable part is used to define less frequently used parameters. Variable parameters are carried in Transport Information
Items, TPI.

The very first bit of the fixed header indicates whether the PDU has a variable header or not. The length of the fixed header
is given by the PDU type. The variable header consists of TPIs. Every TPI has a length field for it's own length. The very
first bit of each TPI indicates whether it is the last TPI or not.

Network octet order for the PDUs is "big-endian". In other words, the most significant octet is transmitted on the network
first followed subsequently by the less significant octets.

Network bit order for bit fields is "big-endian". In other words, the left-most bit in the bit field is the most significant bit of
the octet and is transmitted first followed subsequently by less significant bits.

Note 1) If the first octet of a datagram is 0x00, it will be interpreted as if the datagram contains multiple concatenated PDUs.
See section on Encoding of Concatenated PDUs.

Note 2) This PDU is only applicable if the optional Segmentation and Re-assembly function is implemented.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 40(71)Version 30-April-1998

9.2 Common Header Fields

9.2.1 Continue Flag, CON

As the first bit of the fixed portion of the header, the Continue Flag indicates the presence of any TPIs in the variable part. If
the flag is set, there are one or more TPIs in the variable portion of the header. If the flag is clear, the variable part of the
header is empty.

This flag is also used as the first bit of a TPI, and indicates whether the TPI is the last of the variable header. If the flag is
set, another TPI follows this TPI. If the flag is clear, the octet after this TPI is the first octet of the user data.

9.2.2 Group Trailer (GTR) and Transmission Trailer (TTR) flag

When segmentation and re-assembly is implemented the TTR flag is used to indicate the last packet of the segmented
message, the GTR flag is used to indicate the last packet of a packet group.

Table 13 GTR/TTR flag combinations
GTR TTR Description

0 0 Not last packet
0 1 Last packet of message
1 0 Last packet of packet group
1 1 Segmentation and Re-assembly NOT supported

The default setting SHOULD be GTR=1 and TTR=1, that is, WTP segmentation and re-assembly not supported.

9.2.3 Packet Sequence Number

This is used by the PDUs belonging to the segmentation and re-assembly function. This number indicates the position of the
packet in the segmented message.

9.2.4 PDU Type

The PDU Type field indicates what type of WTP PDU the PDU is (Invoke, Ack, etc). This provides information to the
receiving WTP provider as to how the PDU data SHOULD be interpreted and what action is required.

9.2.5 Reserved, RES

All reserved bits are to be set to the value 0x00 unless otherwise specified.

9.2.6 Re-transmission Indicator, RID

Enables the receiver to differentiate between packets duplicated by the network and packets re-transmitted by the sender. In
the original message the RID is clear. When the message gets re-transmitted the RID is set.

9.2.7 Transaction Identifier, TID

The TID is used to associate a packet with a particular transaction.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 41(71)Version 30-April-1998

9.3 Fixed Header Structure

9.3.1 Invoke PDU

Table 14 Structure of Invoke PDU
Bit/Octet 7 6 5 4 3 2 1 0

1 CON PDU Type = Invoke GTR TTR RID
2
3

TID

4 Version TIDnew U/P RES RES TCL

9.3.1.1 Transaction Class, TCL

The Initiator indicates the desired transaction class in the invoke message.

Table 15 Encoding of Class field
Class TCL

0 0x00
1 0x01
2 0x10

The transaction classes are explained in separate chapter.

9.3.1.2 TIDnew flag

This is set when the Initiator has "wrapped" the TID value; that is, the next TID will be lower than the previous. When the
Responder receives the Invoke PDU and the TIDnew flag is set, it invalidates its cached TID value for this Initiator.

9.3.1.3 Version

The current version in 0x00.

9.3.1.4 U/P flag

When this flag is set it indicates that the Initiator requires a User acknowledgement from the server WTP user. This means
that the WTP user confirms every received message.

When this flag is clear the WTP provider MAY respond to a message without a confirmation from the WTP user.

9.3.2 Result PDU

Table 16 Structure of Result PDU
Bit/Octet 7 6 5 4 3 2 1 0

1 CON PDU Type = Result GTR TTR RID
2
3

TID

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 42(71)Version 30-April-1998

9.3.3 Acknowledgement PDU

Table 17 Structure of Ack PDU
Bit/Octet 7 6 5 4 3 2 1 0

1 CON PDU Type = Acknowledgement Tve/Tok RES RID
2
3

TID

9.3.3.1 Tve/Tok flag

In the direction from the reponder to the initiator the Tve (TID Verify) means: -"Do you have an outstanding transaction
with this TID?". In the opposite direction the Tok (TID OK) flag means: -"I have an outstanding transaction with this TID!".

9.3.4 Abort PDU

Table 18 Structure of Abort PDU
Bit/Octet 7 6 5 4 3 2 1 0

1 CON PDU Type = Abort Abort type
2
3

TID

4 Abort reason

9.3.4.1 Abort type and Abort reasons

Currently the following abort types are specified:

Table 19 WTP Abort Types
Abort type Code Description
Provider (PROVIDER) 0x00 The abort was generated by the WTP provider itself.

The abort reason is specified below.
User (USER) 0x01 The abort was generated by the WTP user. The abort

reason is provided to the WTP provider by the WTP
user.

Abort reasons from the WTP provider

The following abort reasons are specified:

Table 20 WTP Provider Abort Codes
Abort reason (PROVIDER) Code Description
Unknown (UNKNOWN) 0x00 A generic error code indicating an unexpected error .

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 43(71)Version 30-April-1998

Abort reason (PROVIDER) Code Description
Protocol Error (PROTOERR) 0x01 The received PDU could not be interpreted. The

structure MAY be wrong.
Invalid TID (INVALIDTID) 0x02 Only used by the Initiator as a negative result to the

TID verification.
Not Implemented Class 2
(NOTIMPLEMENTEDCL2)

0x03 The transaction could not be completed since the
Responder does not support Class 2 transactions.

Not Implemented SAR
(NOTIMPLEMENTEDSAR)

0x04 The transaction could not be completed since the
Responder does not support SAR.

Not Implemented User
Acknowledgement
(NOTIMPLEMENTEDUACK)

0x05 The transaction could not be completed since the
Responder does not support User acknowledgements.

WTP Version One
(WTPVERSIONONE)

0x06 Current version is 1. The initiator requested a different
version that is not supported.

Capacity Temporarily Exceeded
(CAPTEMPEXCEEDED)

0x07 Due to an overload situation the transaction can not be
completed.

Abort reasons from the WTP user

The abort reasons from the WTP user are given to the local WTP provider in the T-TRAbort request primitive. The abort
reason is specific to the WTP user. For example, if the WTP user is WSP, abort codes defined in [WSP] can be used.

9.3.5 Segmented Invoke PDU (Optional)

Bit/Octet 7 6 5 4 3 2 1 0
1 CON PDU Type = Segmented Invoke GTR TTR RID
2
3

TID

4 Packet Sequence Number

9.3.6 Segmented Result PDU (Optional)

Bit/Octet 7 6 5 4 3 2 1 0
1 CON PDU Type = Segmented Result GTR TTR RID
2
3

TID

4 Packet Sequence Number

9.3.7 Negative Acknowledgement PDU (Optional)

Bit/Octet 7 6 5 4 3 2 1 0
1 CON PDU Type = Negative Ack Reserved RID
2
3

TID

4 Number of Missing Packets = N
5
…

4+N

Packet Sequence Number(s) of Missing Packets

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 44(71)Version 30-April-1998

9.3.7.1 Number of Missing Packets

Indicates the requested number of missing packets. If 0x00, this means that the entire packet group shall be re-transmitted.

9.3.7.2 Packet Sequence Number(s) of Missing Packets

List of packet sequence number for the request packets.

9.4 Transport Information Items

9.4.1 General

The variable part of the PDU can consist of one or several Transport Information Items, TPIs. The length field of a TPI can
be 2 or 8 bits.

The long TPI (8 bits length) has the following structure:

Table 21 Long TPI structure
Bit/Octet 7 6 5 4 3 2 1 0

1 CON TPI Identity 1 RES RES
2 TPI Length = N
3
…

2+N

TPI Data

The short TPI (2 bits length) is structured as

Table 22 Short TPI Structure
Bit/Octet 7 6 5 4 3 2 1 0

1 CON TPI Identity 0 TPI Length = M
2
…

1+M

TPI Data

In the above tables, N=0..255 and M=0..3. The data field of the TPI MUST contain an integer number of octets. In theory
the maximum length of a TPI is 255 octets, however, it is also limited by the MTU size of the bearer network and the
number of, and length of, other TPIs in the same PDU header.

The following TPIs are currently defined:

Table 23 Encoding of TPIs
TPI TPI Identity Comment
Error 0x00
Info 0x01
Option 0x02
Packet Sequence Number (PSN)0x03 Note 1

Note 1) This TPI is only applicable if the optional segmentation and re-assembly function is implemented.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 45(71)Version 30-April-1998

9.4.2 Error TPI

The Error TPI is returned to the sender of an erroneous or unsupported TPI. Currently the following error codes have been
defined:

Table 24 Encoding of Error TPI
Error Code Argument
Unknown TPI 0x01 TPI Identity of unknown TPI
Known TPI, unknown content 0x02 TPI Identity and first octet of content

Depending on the ErrorCode the Error TPI can have a different structures.

Table 25 Structure of Error TPI (UNKNOWN)
Bit/Octet 7 6 5 4 3 2 1 0

1 CON TPI Identity 0 TPI Length = 0x01
2 ErrorCode = 0x01 TPI Identity

Table 26 Structure of Error TPI (KNOWN)
Bit/Octet 7 6 5 4 3 2 1 0

1 CON TPI Identity 0 TPI Length = 0x02
2 ErrorCode = 0x02 TPI Identity
3 First octet of TPI

Note that this TPI is mandated to support by a WTP provider. Consequently, the WTP provider MUST also be able to
recognise the general structure of a TPI.

9.4.3 Info TPI

This TPI is used to piggyback a small amount of data in the variable part of the PDU header. For example, the data can be
performance measurements or statistical data.

The structure of the Info TPI is illustrated below.

Table 27 Structure of Info TPI

Bit/Octet 7 6 5 4 3 2 1 0
1 CON TPI Identity 0 TPI Length = N
2
…

1+N

Information

The above table shows the Info TPI as short TPI. If more information MUST be sent, the long TPI can be used.

9.4.4 Option TPI

The Option TPI is used to transfer parameters between two WTP entities. The parameter carried in the Option TPI is valid
for the lifetime of the transaction. The following options are currently defined:

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 46(71)Version 30-April-1998

Table 28 Encoding of Option TPI
Option Identity Description Comment
Maximum Receive Unit 0x01 This parameter is used by the Initiator to

advertise the maximum unit of data in bytes
that can be received in the result

Note 1

Total Message Size 0x02 This parameter can be sent in the first packet of
a segmented message to inform the receiver
about the total message size in bytes

Note 1

Delay Transmission Timer 0x03 This parameter can be sent in the Ack PDU
when a packet group is acknowledged. The
receiver MUST NOT send the next packet
group until the specified time has elapsed. The
time is in 1/10 seconds.

Note 1

The structure of the Option TPI is illustrated below.

Table 29 Structure of Option TPI
Bit/Octet 7 6 5 4 3 2 1 0

1 CON TPI Identity 0 TPI Length = N
2 Option Identity
3
…

1+N

Option Value

Note 1) This parameter is only applicable if the optional segmentation and re-assembly function is implemented.

9.4.5 Packet Sequence Number TPI (Optional)

The Ack PDU does not have a Packet Sequence Number (PSN) field. When Segmentation and Re-assembly is used this TPI
is attached to the variable part of the Ack PDU header. The PSN included in the Ack PDU is the PSN of the acknowledged
packet (GTR or TTR packet).

Bit/Octet 7 6 5 4 3 2 1 0
1 CON TPI Identity = PSN TPI 0 Length = 0x01
2 Packet Sequence Number

9.5 Structure of Concatenated PDUs
One or more WTP Protocol Data Units (PDUs) MAY be contained in one datagram Service Data Unit (SDU). This is
illustrated below.

The following table represents a datagram SDU with one WTP PDU. The PDU including header and data is N octets.

WTP Protocol Data Unit(s)

Datagram Service Data Unit

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 47(71)Version 30-April-1998

Table 30 WTP PDU Without Concatenation
Bit/Octet 7 6 5 4 3 2 1 0

1
…
N

WTP PDU

The following table represents two WTP PDUs concatenated in the same SDU of the bearer network. The first PDU is N
octets and the second is M octets.

Table 31 Concatenated WTP PDUs
Bit/Octet 7 6 5 4 3 2 1 0

1 Concatenation Indicator = 0x00
2 0 WTP PDU Length = N
3
…

N+2

WTP PDU

N+3 0 WTP PDU Length = M
N+4
…

N+M+3

WTP PDU

The concatenation indicator is used to indicate that the SDU contains multiple WTP PDUs. The number of PDUs is limited
only by the maximum size of the SDU.

The PDU Length field can be 7 or 15 bits. If the first bit in the PDU Length field is set, the length field is 15 bits, if not, it is
7 bits. This means that the PDU Length field takes up 8 or 16 bits depending on whether the first bit is set or not. In the
above table the first bit is 0 and thus the length field is 7 bits.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 48(71)Version 30-April-1998

10. State Tables

10.1 General
This chapter defines state tables for the core WTP protocol without the optional segmentation and re-assembly function.

10.2 Event Processing
The WTP provider initiating a transaction is called the Initiator. The WTP provider responding to an initiated transaction is
called the Responder. An implementation of the WTP protocol is not required to have both Initiator and Responder
functionality. For example, if the WTP user is the WSP client protocol the WTP provider MAY only support initiation of
transactions, that is, no Responder functionality. See WTP conformance clause for details on what MUST be implemented
in order to conform to the standard.

The interface to the next higher layer is defined by the WTP service primitives. The next lower layer is typically a datagram
service and the only service primitives are the UnitData indication and requests. The request and response service primitives
from the next higher layer together with indication primitive from the next lower layer are termed events. If multiple PDUs
are concatenated in the SDU from the next lower layer, they MUST be separated and dispatched to the transactions. In
addition to the external events, there will also be internal events such as timer expirations and errors.

An event is validated before it is processed. The following tests are performed, and if no action is taken, the event is
processed according to the state tables.

Table 32 Test of incoming events
Test Action
UnitData.ind on the Responder: Invoke PDU Create a new transaction
UnitData.ind on the Initiator: Ack PDU with
the TIDve flag set, no matching outstanding
transaction

Send Abort PDU (INVALIDTID)

UnitData.ind: Ack PDU, Result PDU or Abort
PDU, no matching outstanding transaction

Ignore

Illegal PDU type or erroneous header structure Send Abort PDU (PROTOERR)
Buffer overflow or out-of-memory errors Send Abort PDU (CAPTEMPEXCEED)
UnitData.ind on the Responder: Invoke PDU
requesting Class 2 transaction and Class 2 is
not supported

Send Abort PDU (NOTIMPLEMENTEDCL2)

UnitData.ind on the Responder: Invoke PDU
using SAR and SAR is not supported

Send Abort PDU (NOTIMPLEMENTEDSAR)

UnitData.ind on the Responder: Invoke PDU
requesting User acknowledgement and User
acknowledgement is not supported

Send Abort PDU (NOTIMPLEMENTEDUACK)

UnitData.ind on the Responder: Invoke PDU
with Version != 0x00

Send Abort PDU (WTPVERSIONONE)

10.3 Actions

10.3.1 Timers

The following timer actions can be used in the state tables:

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 49(71)Version 30-April-1998

Start timer, <value>
Starts the timer with the specified interval value. If the timer is already running, it is re-started with the new value.

Stop timer
Stop the timer without generating an event.

10.3.2 Counters

The following counter actions can be used in the state tables:

Reset counter
Set the counter to zero.

Increment counter
Increment the counter with one.

10.3.3 Messages

The following message actions can be used in the state tables:

Queue (Time T)
Queuing a PDU causes it to be queued for eventual delivery. The message MUST NOT be queued for longer time than T
time units.

Send
Sending a PDU causes it and any queued PDUs to be sent immediately.

The queuing mechanism is used to concatenate messages from different transactions. This can be seen as a concatenation
layer that operates below the transaction state machine. The realization of the concatenation layer is implementation
dependent and not specified.

10.4 Timers, Counters and Variables

10.4.1 Timers

The following timers are used by WTP:

Table 33 WTP Timers
Timer Description
Transaction timer Each transaction has a timer associated with it. The timer

is used for both the retry interval, acknowledgement
interval and wait timeout interval.

A timer can be started with different timer values depending on the type of transaction and the current state of the
transaction. Timer values are grouped according to their purpose. This is shown in the following table.

Table 34 WTP Timer Intervals
Timer interval (name) Description
Acknowledgement interval (A) This sets a bound for the amount of time to wait before

sending an acknowledgement.
Retry interval (R) This sets a bound for the amount of time to wait before

re-transmitting a PDU.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 50(71)Version 30-April-1998

Timer interval (name) Description
Wait timeout interval (W) This sets a bound for the amount of time to wait before

state information about a transaction is released.

Only Class 2 Initiator and Class 2 Responder

The Retry interval MAY be implemented as an array with the re-transmission counter as an index, R[RCR]. An exponential
back off algorithm can be implemented by populating R[] with exponentially increasing values.

The value of a timer interval depends on the following parameters:

• The characteristics of the bearer network
• The transaction class
• The state of the transaction (which message is being re-tried or acknowledged)

Timer interval values for different bearer networks can be found in Appendix A.

10.4.2 Counters

The following counters are used by the WTP:

Table 35 WTP Counters
Counter (name) Description
Re-transmission Counter (RCR) This set a bound for the maximum number of re-

transmissions of any PDU. The max value is defined as
RCR_MAX.

Acknowledgment Expiration Counter (AEC) This sets a bound for the maximum number of times the
transaction timer, initialized with the acknowledgement
interval, is allowed to expire and be re-started before the
transaction is aborted. The max value is defined as
AEC_MAX.

10.4.3 Variables

The following variables are used by WTP at the Initiator and Responder.

Table 36 WTP Variables
WTP variables

Variables Type Description
GenTID Uint16 The TID to use for the next transaction. Incremented

by one for every initiated transaction.
Global
Only Initiator

SendTID Uint16 The TID value to send in all PDUs in this transaction One per transaction
RcvTID Uint16 The TID values expected to receive in every PDU in

this transaction.

RcvTID = SendTID XOR 0x8000

One per transaction

LastTID Uint16 The last received TID from a certain remote host One per remote host
Only Responder

HoldOn BOOL True if HoldOn acknowledgement has been received One per class 2
transaction

Uack BOOL True if User Acknowledgement has been requested for
this transaction

One per transaction

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 51(71)Version 30-April-1998

The Uint16 type is an unsigned 16-bit integer. The BOOL type is an boolean value that only can take the value of True or
False.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 52(71)Version 30-April-1998

10.5 WTP Initiator

WTP Initiator NULL
Event Condition Action Next State

Class == 2 | 1 SendTID = GenTID
Send Invoke PDU
Reset RCR
Start timer, R [RCR]
Uack = False

Class == 2 | 1
UserAck

SendTID = GenTID
Send Invoke PDU
Reset RCR
Start timer, R [RCR]
Uack = True

RESULT WAITTR-Invoke.req

Class == 0 SendTID = GenTID
Send Invoke PDU

NULL

WTP Inititator RESULT WAIT
Event Condition Action Next State
TR-Abort.req Abort transaction

Send Abort PDU (USER)
NULL

Class == 2 Stop timer
Generate T-TRInvoke.cnf
HoldOn = True

RESULT WAIT

Class == 1 Stop timer
Generate T-TRInvoke.cnf

NULL

RcvAck

TIDve
Class == 2 | 1

Send Ack(TIDok)
Increment RCR
Start timer, R [RCR]

RESULT WAIT

RcvAbort Abort transaction
Generate TR-Abort.ind

NULL

RCR <
MAX_RCR

Increment RCR
Start timer, R [RCR]
Send Invoke PDU

RESULT WAITTimerTO_R

RCR ==
MAX_RCR

Abort transaction
Generate TR-Abort.ind

NULL

Class == 2
HoldOn == True

Stop timer
Generate TR-Result.ind
Start timer, A

RcvResult

Class == 2
HoldOn == False

Stop timer
Generate TR-Invoke.cnf
Generate TR-Result.ind
Start timer, A

RESULT RESP
WAIT

WTP Inititator RESULT RESP WAIT
Event Condition Action Next State

Queue(A) Ack PDU
Start timer, W

TR-Result.res

ExitInfo Queue(A) Ack PDU with Info TPI
Start timer, W

WAIT TIMEOUT

RcvAbort Abort transaction
Generate T-TRAbort.ind

TR-Abort.req Abort transaction
Send Abort PDU (USER)

NULL

RcvResult Ignore RESULT RESP
WAIT

AEC <
AEC_MAX

Increment AEC
Start timer, A

RESULT RESP
WAIT

TimerTO_A

AEC ==
AEC_MAX

Abort transaction
Send Abort PDU (NORESPONSE)

NULL

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 53(71)Version 30-April-1998

WTP Inititator RESULT RESP WAIT
Event Condition Action Next State

Uack == False Queue(A) Ack PDU
Start timer, W

WAIT TIMEOUT

WTP Inititator WAIT TIMEOUT
Event Condition Action Next State
RcvResult Send Ack PDU WAIT TIMEOUT
RcvAbort Abort transaction

Generate T-TRAbort.ind
NULL

TimerTO_W
TR-Abort.req Abort transaction

Send Abort PDU (USER)

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 54(71)Version 30-April-1998

10.6 WTP Responder

WTP Responder LISTEN
Event Condition Action Next State

Class == 2 | 1
Valid TID
U/P flag

Generate TR-Invoke.ind
Start timer, A
Uack = True

Class == 2 | 1
Valid TID

Generate TR-Invoke.ind
Start timer, A
Uack = False

INVOKE RESP
WAIT

Class == 0 Generate TR-Invoke.ind LISTEN

RcvInvoke

Class == 2 | 1
Invalid TID

Send Ack(TIDve) TIDOK WAIT

WTP Responder TIDOK WAIT
Event Condition Action Next State
RcvAck Class == 2 | 1

TIDok
Generate TR-Invoke.ind
Start timer, A

INVOKE RESP
WAIT

RcvAbort Abort transaction LISTEN

WTP Responder INVOKE RESP WAIT
Event Condition Action Next State

Class == 1
ExitInfo

Queue(A) Ack PDU with InfoTPI
Start timer,W

Class == 1 Queue(A) Ack PDU
Start timer, W

WAIT TIMEOUTTR-Invoke.res

Class == 2 Start timer, A RESULT WAIT
TR-Abort.req Abort transaction

Send Abort PDU (USER)
LISTEN

RcvAbort Generate TR-Abort.ind
Abort transaction

LISTEN

RcvInvoke Ignore INVOKE RESP
WAIT

AEC <
AEC_MAX

Increment AEC
Start timer, A

INVOKE RESP
WAIT

AEC ==
AEC_MAX

Abort transaction
Send Abort PDU (NORESPONSE)

LISTEN

Class == 1
Uack == False

Queue(A) Ack PDU
Start timer, W

WAIT TIMEOUT

TimerTO_A

Class == 2
Uack == False

Send Ack PDU
Stop timer

RESULT WAIT

WTP Responder RESULT WAIT
Event Condition Action Next State
TR-Result.req Reset RCR

Start timer, R[RCR]
Send Result PDU

RESULT RESP
WAIT

TR-Abort.req Abort transaction
Send Abort PDU (USER)

LISTEN

RcvAbort Generate T-TRAbort.ind
Abort transaction

LISTEN

TimerTO_A Send Ack PDU
Stop timer

RESULT WAIT

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 55(71)Version 30-April-1998

WTP Responder RESULT RESP WAIT
Event Condition Action Next State
TR-Abort.req Abort transaction

Send Abort PDU (USER)
LISTEN

RcvAbort Generate T-TRAbort.ind
Abort transaction

LISTEN

RcvAck Generate TR-Result.cnf LISTEN
RCR <
MAX_RCR

Increment RCR
Send Result PDU
Start timer, R [RCR]

RESULT RESP
WAIT

TimerTO_R

RCR ==
MAX_RCR

Generate T-TRAbort.ind
Abort transaction

LISTEN

WTP Responder WAIT TIMEOUT
Event Condition Action Next State
RcvInvoke Send Ack PDU WAIT TIMEOUT
RcvAbort Abort transaction

Generate T-TRAbort.ind
LISTEN

TimerTO_W
TR-Abort.req Abort transaction

Send Abort PDU (USER)

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 56(71)Version 30-April-1998

11. Examples of Protocol Operation

11.1 Introduction
The examples in this chapters attempts to illustrate and clarify how the protocol operates. For the sake of brevity, only
header fields relevant for the specific example are included in the diagrams. Each flag in the Flag field of the PDU header is
indicated by one character. The below table shows the different characters that can appear in the examples.

Table 37 Abbreviations Used in the Examples
Abbreviation Meaning
N TIDnew flag is set
V TIDve flag is set
O TIDok flag is set
U U/P flag is set
G GTR flag is set
T TTR flag is set
TG Both TTR and GTR flags are set to indicate that SAR

is not supported
RID = X Re-transmission Indicator is X
TID = N Transaction Identifier is N
c0 The TCL field indicates class 0 transaction
c1 The TCL field indicates class 1 transaction
c2 The TCL field indicates class 2 transaction

Parameters like Abort reason and Error codes are written in clear text, and so are TPIs. For Transaction Identifiers N* is N
with the high order bit set; if N = 0x0000 then N* = 0x8000.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 57(71)Version 30-April-1998

11.2 Class 0 Transaction

11.2.1 Basic Transaction

Invoke(TID=N, TG, c0 …)
1

ResponderInitiator

Figure 3 Basic Class 0 Transaction

1. The Initiator initiates a class 0 transaction (c0).

11.3 Class 1 Transaction

11.3.1 Basic Transaction

Invoke(TID=N, TG, c1 …)

Ack(TID=N*)2

1

ResponderInitiator

Figure 4 Basic Class 1 Transaction
1. The Initiator initiates a class 1 transaction (c1).
2. The Responder acknowledges the received invoke message.

11.4 Class 2 Transaction

11.4.1 Basic Transaction

Ack(TID=N)

Result (TID=N*, TG, …)

Invoke(TID=N, TG, c2, …)

2

3

1

ResponderInitiator

Figure 5 Basic Class 2 Transaction

1. The Initiator initiates a class 2 transaction (c2).
2. The Responder waits for the invoke message to be processed and implicitly acknowledges the invoke message with the

Result.
3. The Initiator acknowledges the received result message.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 58(71)Version 30-April-1998

11.4.2 Transaction with “hold on” Acknowledgement

Invoke(TID=N, TG, c2, …)

Result(TID=N*, TG, …)

4

3

2

1

ResponderInitiator

Ack(TID=N)

Ack(TID=N*)

Figure 6 Class 2 Transaction with "hold on" acknowledgement.

1. The Initiator initiates a class 2 transaction (c2).
2. The Responder waits for the invoke message to be processed. The acknowledgement timer at the Responder expires and

an "hold-on" acknowledgement is sent to prevent the Initiator from re-transmitting the invoke message.
3. The result is sent to the Initiator
4. The Initiator acknowledges the received result message.

11.5 Transaction Identifier Verification

11.5.1 Verification Succeeds

Result(TID=N*, TG)

Invoke(TID=N, TG, c2…)

4

3

2

1

ResponderInitiator

Ack(TID=N)

Ack(TID=N, O)

Ack(TID=N*, V, …)

5

Figure 7 Verification Succeeds

The Responder receives a new invoke message and the TID test fails, this causes the Verification procedure to be invoked.
The Responder returns an acknowledgement to the Initiator for a verification of whether it has an outstanding transaction
with this TID. In this example, the Initiator has an outstanding transaction with the TID and acknowledges the verification.

11.5.2 Verification Fails

Invoke(TID=N, TG, c2, …)

Initiator Responder

Abort(TID=N, INVALIDTID)

Ack(TID=N*, V)

1

2

3

Transaction number N is terminated

Figure 8 Verification Fails

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 59(71)Version 30-April-1998

The invoke message with TID=N is duplicated in the network, or has been delayed. When it arrives, transaction N has
already been terminated and the Responder asks the Initiator to verify the transaction. The Initiator aborts the transaction by
sending an Abort.

11.5.3 Transaction with Out-Of-Order Invoke

An invoke message is delayed in the network. When the message finally arrives to the Responder, the Responder has cached
a higher TID value. The Responder initiates a Verification in order to check whether the Initiator still has an invoke message
with TID=N outstanding.

Result(TID=N*, TG, …)

Ack(TID=N, O)

Ack(TID=N*, V)

Result(TID=N+3*, TG, …)

Ack(TID=N+3)

Invoke(TID=N+3, TG, c2, …)

Ack(TID=N)

Invoke(TID=N, TG, c2,…)

9

8

7

6

5

1

2

3

4

Initiator Responder

Figure 9 Delayed Invoke Message

Note that the Responder must not replace it’s cached TID value (N+3) with the lower TID value (N). If the cached TID is
moved backwards, old duplicates with higher TID values will erroneously get accepted.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 60(71)Version 30-April-1998

11.6 Segmentation and Re-assembly
This example illustrates a Class 2 transaction using segmentation. The Invoke is segmented and sent in five packets in two
packet groups.

Result (TID=N*, T,…)

Ack(TID=N*, PSNR= 2)

8

7

6

5 SegmInvoke(TID=N, PSN=3,...)

SegmInvoke(TID=N, G, PSN= 2,...)

SegmInvoke(TID=N, PSN= 1,…)

Invoke(TID=N, c2, ...)
1

2

3

4

Ack(TID=N)

SegmInvoke(TID=N, T, PSN= 4,...)

Initiator Responder

Figure 10 Segmentation of invoke message

The Initiator starts off by sending the first three packets in one batch. The last packet has the GTR flag to trigger an
acknowledgement from the Responder. Once the acknowledgement is received by the Initiator the last two packets of the
message are sent. The final message has the TTR flag set. After some time, the Responder sends back the result to the
Initiator. The Initiator acknowledges the result and the transaction is finished.

Note that the PSN TPI is used for the Packet Sequence Number in the Ack PDU.

11.6.1 Selective Re-transmission

This example illustrates a Class 1 transaction using segmentation. One of the packets in the first packet group is lost and the
Responder has to request the packet to be re-transmitted.

SegmInvoke(TID=N, PSN=1, RID=0,…)

Nack(TID=N*, “Missing packet”, PSNR=1)

6

5 SegmInvoke(TID=N, PSN=1, RID=1..)

SegmInvoke(TID=N, G, PSN=2, ..)

Invoke(TID=N, c2, ...)
1

2

3

4

X

Ack(TID=N*, PSNR=2)

ResponderInitiator

Figure 11 Selective re-transmission

The Initiator starts off by sending the first three packets. The second packet is lost. When the Responder receives the packet
with the GTR flag set, it attempts to re-assemble the packet group but fails due to the one missing packet. The Responder
returns a Nack to request the missing packet. The Initiator re-transmit the missing packet. The re-transmitted packet has the
RID flag set. Once the missing packet has been received by the Responder the message is acknowledged and the transaction
is finished.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 61(71)Version 30-April-1998

Note that the PSN TPI is used for the Packet Sequence Number in the Ack PDU.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 62(71)Version 30-April-1998

Appendix A. Default Timer and Counter Values
The timers are initial estimates and have not yet been verified.

The timer values in the tables below are expressed in seconds. The counters are expressed in times an event happens.

GSM SMS

The maximum round-trip time is assumed to be 40 seconds (while a median round-trip time is about 10 seconds), and the
timer values are thus suggested to be:

Timer interval Type Without
User Ack.

With User
Ack.

Acknowledgement interval (A) ACK_T 10 10
S_ACK_T 0 5
L_ACK_T 20 20

Retry interval (R) TTR_T 60 60
S_TTR_T 35 40
L_TTR_T 70 70

GTR_T 45 45
Wait timeout interval (W) WAIT_T 300 300

Counter name Value for
stack acks

Value for
user acks

Max Retransmissions 4 4
Max Ack timer Expiration 4 4

GSM USSD

The maximum round-trip time is assumed to be 5 seconds, and the timer values are thus suggested to be:

Timer interval Type Without
User Ack.

With User
Ack.

Acknowledgement interval (A) ACK_T 10 10
S_ACK_T 0 5
L_ACK_T 10 10

Retry interval (R) TTR_T 20 20
S_TTR_T 14 14
L_TTR_T 20 20

GTR_T 10 10
Wait timeout interval (W) WAIT_T 60 60

Counter name Value for
stack acks

Value for
user acks

Max Retransmissions 4 4
Max Ack timer Expiration 4 4

CDPD

The maximum round-trip time is assumed to be 3 seconds, and the timer values are thus suggested to be:

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 63(71)Version 30-April-1998

Timer interval Type Without
User Ack.

With User
Ack.

Acknowledgement interval (A) ACK_T 2 2
S_ACK_T 0 2
L_ACK_T 2 3

Retry interval (R) TTR_T 3 3
S_TTR_T 3 3
L_TTR_T 3 3

GTR_T 3 3
Wait timeout interval (W) WAIT_T 30 30

Counter name Value for
stack acks

Value for
user acks

Max Retransmissions 8 8
Max Ack timer Expiration 6 6

Circuit switched data

The maximum round-trip time is assumed to be 3 seconds, and the timer values are thus suggested to be:

Timer interval Type Without
User Ack.

With User
Ack.

Acknowledgement interval (A) ACK_T 2 2
S_ACK_T 0 1
L_ACK_T 7 7

Retry interval (R) TTR_T 5 5
S_TTR_T 3 4
L_TTR_T 10 10

GTR_T 3 3
Wait timeout interval (W) WAIT_T 40 40

Counter name Value for
stack acks

Value for
user acks

Max Retransmissions 4 4
Max Ack timer Expiration 4 4

Timer Usage

There are a number of timers with similar behavior, but different values. These timers are defined to enable an optimal use
of the available bandwidth. The following table shows what timer intervals shall be used for the different messages in a
transaction.

Message type Class 2 Class 1
Invoke message TTR_T S_TTR_T
Hold on acknowledgement ACK_T -
Result message L_TTR_T -

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 64(71)Version 30-April-1998

Last acknowledgement L_ACK_T S_ACK_T
Last packet of packet group GTR_T GTR_T

For Class 0 no timer values are applicable.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 65(71)Version 30-April-1998

Appendix B. PICS Proforma
The supplier of a protocol implementation that claims conformance to this Specification shall complete a copy of the PICS
proforma provided in this appendix, including the information necessary to identify both the supplier and the
implementation.

B.1 Introduction
The supplier of a protocol implementation which is claimed to conform to this Specification shall complete the following
Protocol Implementation Conformance Statement (PICS) proforma.

A completed PICS proforma is the PICS for the implementation in question. The PICS is a statement of which capabilities
and options of the protocol have been implemented. The PICS can have a number of uses, including use

— by the protocol implementor, as a check-list to reduce the risk of failure to conform to the standard through
oversight;

— by the supplier and acquirer — or potential acquirer — of the implementation, as a detailed indication of the
capabilities of the implementation, stated relative to the common basis for understanding provided by the
standard PICS proforma;

— by the user — or potential user — of the implementation, as a basis for initially checking the possibility of
interworking with another implementation (note that, while interworking can never be guaranteed, failure to
interwork can often be predicted from incompatible PICSs);

— by a protocol tester, as the basis for selecting appropriate tests against which to assess the claim for
conformance of the implementation.

B.2 Abbreviations and special symbols

B.2.1 Status symbols

M mandatory

O optional

O.<n> optional, but support of at least one of the group of options labelled by the same numeral <n> is

required

X prohibited

<pred>: conditional-item symbol, including predicate identification (see B.3.4)

^ logical negation, applied to a conditional item’s predicate

B.2.2 Other symbols

<r> receive aspects of an item

<s> send aspects of an item

B.3 Instructions for completing the PICS proforma

B.3.1 General structure of the PICS proforma

The first part of the PICS proforma — Implementation Identification and Protocol Summary — is to be completed as
indicated with the information necessary to identify fully both the supplier and the implementation.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 66(71)Version 30-April-1998

The main part of the PICS proforma is a fixed-format questionnaire divided into a number of major subclauses; these can
be divided into further subclauses each containing a group of individual items. Answers to the questionnaire items are to be
provided in the rightmost column, either by simply marking an answer to indicate a restricted choice (usually Yes or No),
or by entering a value or a set or range of values.

NOTE — There are some items for which two or more choices from a set of possible answers can apply. All relevant choices
are to be marked in these cases.

Each item is identified by an item reference in the first column; the second column contains the question to be answered;
and the third column contains the reference or references to the material that specifies the item in the main body of this
Specification. The remaining columns record the status of the item — whether support is mandatory, optional, prohibited,
or conditional — and provide space for the answers (see also B.3.4).

A supplier may also provide further information, categorized as either Additional Information or Exception Information.
When present, each kind of further information is to be provided in a further subclause of items labelled A<i> or X<i>,
respectively, for cross-referencing purposes, where <i> is any unambiguous identification for the item (e.g., a number);
there are no other restrictions on its format or presentation.

A completed PICS proforma, including any Additional Information and Exception Information, is the Protocol
Implementation Conformance Statement for the implementation in question.

NOTE — Where an implementation is capable of being configured in more than one way, a single PICS may be able to
describe all such configurations. However, the supplier has the choice of providing more than one PICS, each
covering some subset of the implementation’s configuration capabilities, in cases where this makes for easier and
clearer presentation of the information.

B.3.2 Additional information

Items of Additional Information allow a supplier to provide further information intended to assist in the interpretation of the
PICS. It is not intended or expected that a large quantity will be supplied, and a PICS can be considered complete without
any such information. Examples might be an outline of the ways in which a (single) implementation can be set up to
operate in a variety of environments and configurations, or a brief rationale — based perhaps upon specific application
needs — for the exclusion of features which, although optional, are nonetheless commonly present in implementations of
this protocol.

References to items of Additional Information may be entered next to any answer in the questionnaire, and may be included
in items of Exception Information.

B.3.3 Exception information

It may occasionally happen that a supplier will wish to answer an item with mandatory or prohibited status (after any
conditions have been applied) in a way that conflicts with the indicated requirement. No pre-printed answer will be found
in the support column for this; instead, the supplier shall write the missing answer into the Support column, together with
an X<i> reference to an item of Exception Information, and shall provide the appropriate rationale in the Exception
Information item itself.

An implementation for which an Exception Information item is required in this way does not conform to this Specification.

NOTE — A possible reason for the situation described above is that a defect in the standard has been reported, a correction
for which is expected to change the requirement not met by the implementation.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 67(71)Version 30-April-1998

B.3.4 Conditional status

B.3.4.1 Conditional items

The PICS proforma contains a number of conditional items. These are items for which the status — mandatory, optional,
or prohibited — that applies is dependent upon whether or not certain other items are supported, or upon the values
supported for other items.

In many cases, whether or not the item applies at all is conditional in this way, as well as the status when the item does
apply.

Where a group of items is subject to the same condition for applicability, a separate preliminary question about the
condition appears at the head of the group, with an instruction to skip to a later point in the questionnaire if the “Not
Applicable” answer is selected. Otherwise, individual conditional items are indicated by one or more conditional symbols
(on separate lines) in the status column.

A conditional symbol is of the form “<pred>:<x>” where “<pred>” is a predicate as described in B.3.4.2, and “<x>” is one
of the status symbols M, O, O.<n>, or X.

If the value of the predicate in any line of a conditional item is true (see B.3.4.2), then the conditional item is applicable,
and its status is that indicated by the status symbol following the predicate; the answer column is to be marked in the usual
way. If the value of a predicate is false, the Not Applicable (N/A) answer is to be marked in the relevant line. Each line in
a multi-line conditional item should be marked: at most one line will require an answer other than N/A.

B.3.4.2 Predicates

A predicate is one of the following:

a) an item-reference for an item in the PICS proforma: the value of the predicate is true if the item is marked
as supported, and is false otherwise;

b) a predicate name, for a predicate defined elsewhere in the PICS proforma (usually in the Major Capabilities
section or at the end of the section containing the conditional item): see below; or

c) the logical negation symbol “^” prefixed to an item-reference or predicate name: the value of the predicate
is true if the value of the predicate formed by omitting the “^” is false, and vice versa.

The definition for a predicate name is one of the following

a) an item-reference, evaluated as at (a) above;

b) a relation containing a comparison operator (=, < , etc.) with at least one of its operands being an item-
reference for an item taking numerical values as its answer; the predicate is true if the relation holds when
each item-reference is replaced by the value entered in the Support column as an answer to the item referred
to; or

c) a boolean expression constructed by combining simple predicates, as in (a) and (b), using the boolean
operators AND, OR, and NOT, and parentheses, in the usual way; the value of such a predicate is true if the
boolean expression evaluates to true when the simple predicates are interpreted as described above.

Each item whose reference is used in a predicate or predicate definition is indicated by an asterisk in the Item column.

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 68(71)Version 30-April-1998

B.4 Identification

B.4.1 Implementation identification

Supplier

Contact point for
queries about the PICS

Implementation name(s)
and version(s)

Other information necessary
for full identification
(e.g., name(s) and version(s)
of machines and/or operating
systems, system name(s))

NOTES

1 Only the first three items are required for all implementations; other information may be completed as appropriate in
meeting the requirement for full identification.

2 The terms Name and Version should be interpreted appropriately to correspond with a supplier’s terminology (e.g.,
Type, Series, Model).

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 69(71)Version 30-April-1998

A.4.2 Protocol summary

Protocol version(s) supported

Identificat ion of
protocol specification

Have any Exception Informat ion items been required (see A.3.3)?
(The answer YES means that the implementation does not conform to this Specificat ion)

Identificat ion of corrigenda
and amendments to the
PICS proforma

WAP Wireless Transaction Protocol

Date of statement

YES NO

B.5 Wireless Transaction Protocol

B.5.1 Applicability

Clause B.5 is applicable to all implementations that claim conformance to this Specification.

B.5.5 Protocol Functions

B.5.5.1 Transaction Classes

Item Function Reference Status Support

INCL0 Does the implementation support the initiation of
class 0 transactions?

7.1 M YES NO

INCL1 Does the implementation support the initiation of
class 1 transactions?

7.2 M YES NO

INCL2 Does the implementation support the initiation of
class 2 transactions?

7.3 O YES NO

RECL1 Does the implementation support responding to
class 1 transactions?

7.2 M YES NO

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 70(71)Version 30-April-1998

Item Function Reference Status Support

RECL2 Does the implementation support responding to
class 2 transactions?

7.3 O YES NO

B.5.5.1 Protocol Features

Item Function Reference Status Support

UACK Does the implementation support the user
acknowledgement function?

8.3 O YES NO

CONC Does the implementation support concatenation? 8.5 O YES NO

SEPA Does the implementation support separation of
concatenated PDUs?

8.5 M YES NO

RETR Does the implementation support re-transmission
until acknowledgement?

8.2 M YES NO

TRAB Does the implementation support transaction
abort?

8.7 M YES NO

VERS Does the implementation support version
handling?

8.13 M YES NO

ERRO Does the implementation support error handling? 8.12 M YES NO

VERI Does the implementation support initiation of
transaction verification?

8.9 O YES NO

VERR Does the implementation support responding to
transaction verification?

8.9 M YES NO

TPIE Does the implementation support the Error TPI? 8.10 M YES NO

TPII Does the implementation support the Info TPI? 8.10 M YES NO

TPIO Does the implementation support the Option TPI? 8.10 O YES NO

TPIP Does the implementation support the PSN TPI? 8.10 O YES NO

SAR Does the implementation support segmentation
and re-assembly?

8.14 O YES NO

© Copyright Wireless Application Protocol Forum, 1998. All rights reserved.

Page 71(71)Version 30-April-1998

Appendix C. History and Contact Information
Document history

Date Status Comment

29-April-1998 Specification First version.

Contact Information

http://www.wapforum.org.

technical-comments@wapforum.org

