
WMLScript
Specification

 Version 30-Apr-1998

Wireless Application Protocol
WMLScript Language Specification

Disclaimer:

This document is subject to change without notice.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page 2(113)Version 30-Apr-1998

Contents

1 . SCOPE... 7

2 . DOCUMENT STATUS.. 8

2.1 COPYRIGHT NOTICE .. 8
2.2 ERRATA... 8
2.3 COMMENTS ... 8

3 . REFERENCES ... 9

3.1 NORMATIVE REFERENCES ... 9
3.2 INFORMATIVE REFERENCES 9

4 . DEFINITIONS AND ABBREVIATIONS... 10

4.1 DEFINITIONS.. 10
4.2 ABBREVIATIONS.. 11

5 . OVERVIEW ... 12

5.1 WHY SCRIPTING? .. 12
5.2 BENEFITS OF USING WMLSCRIPT.. 12

6 . WMLSCRIPT CORE .. 13

6.1 LEXICAL STRUCTURE .. 13
6.1.1 Case Sensitivity... 13
6.1.2 Whitespace and Line Breaks... 13
6.1.3 Usage of Semicolons .. 13
6.1.4 Comments ... 14
6.1.5 Literals.. 14

6.1.5.1 Integer Literals...14
6.1.5.2 Floating-Point Literals ...15
6.1.5.3 String Literals ..15
6.1.5.4 Boolean Literals...16
6.1.5.5 Invalid Literal ..16

6.1.6 Identifiers.. 16
6.1.7 Reserved Words .. 17
6.1.8 Name Spaces... 17

6.2 VARIABLES AND DATA TYPES... 18
6.2.1 Variable Declaration.. 18
6.2.2 Variable Scope and Lifetime .. 18
6.2.3 Variable Access .. 19
6.2.4 Variable Type ... 19
6.2.5 L-Values ... 19
6.2.6 Type Equivalency ... 19
6.2.7 Numeric Values .. 19

6.2.7.1 Integer Size ..20
6.2.7.2 Floating-point Size ..20

6.2.8 String Values .. 20
6.2.9 Boolean Values... 21

6.3 OPERATORS AND EXPRESSIONS... 21
6.3.1 Assignment Operators .. 21
6.3.2 Arithmetic Operators.. 21
6.3.3 Logical Operators .. 22
6.3.4 String Operators... 23

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page 3(113)Version 30-Apr-1998

6.3.5 Comparison Operators ...23
6.3.6 Array Operators..24
6.3.7 Comma Operator ..24
6.3.8 Conditional Operator..24
6.3.9 typeof Operator...24
6.3.10 isvalid Operator ..25
6.3.11 Expressions ...25
6.3.12 Expression Bindings..25

6.4 FUNCTIONS ..27
6.4.1 Declaration ...27
6.4.2 Function Calls...27

6.4.2.1 Local Script Functions...28
6.4.2.2 External Functions...28
6.4.2.3 Library Functions ..29

6.4.3 Default Return Value ..29
6.5 STATEMENTS ...29

6.5.1 Empty Statement..29
6.5.2 Expression Statement ..30
6.5.3 Block Statement...30
6.5.4 Variable Statement..31
6.5.5 If Statement ...32
6.5.6 While Statement...32
6.5.7 For Statement..33
6.5.8 Break Statement ..33
6.5.9 Continue Statement ...34
6.5.10 Return Statement...34

6.6 LIBRARIES..35
6.6.1 Standard Libraries ..35

6.7 PRAGMAS...35
6.7.1 External Compilation Units ..35
6.7.2 Access Control ..36
6.7.3 Meta-Information..37

6.7.3.1 Name ...38
6.7.3.2 HTTP Equiv ..38
6.7.3.3 User Agent...38

7 . AUTOMATIC DATA TYPE CONVERSION RULES..39

7.1 GENERAL CONVERSION RULES ..39
7.1.1 Conversions to String..39
7.1.2 Conversions to Integer ..39
7.1.3 Conversions to Floating-Point..40
7.1.4 Conversions to Boolean ..40
7.1.5 Conversions to Invalid ..40
7.1.6 Summary ...40

7.2 OPERATOR DATA TYPE CONVERSION RULES...41
7.3 SUMMARY OF OPERATORS AND CONVERSIONS..43

7.3.1 Single-Typed Operators ..43
7.3.2 Multi-Typed Operators ...44

8 . WMLSCRIPT GRAMMAR ..45

8.1 CONTEXT-FREE GRAMMARS..45
8.1.1 General ...45
8.1.2 Lexical Grammar ..45
8.1.3 Syntactic Grammar ...45
8.1.4 Numeric String Grammar ...46
8.1.5 Grammar Notation..46

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page 4(113)Version 30-Apr-1998

8.1.6 Source Text ... 48
8.2 WMLSCRIPT LEXICAL GRAMMAR .. 49
8.3 WMLSCRIPT SYNTACTIC GRAMMAR.. 54
8.4 NUMERIC STRING GRAMMAR.. 59

9 . WMLSCRIPT BYTECODE INTERPRETER .. 61

9.1 INTERPRETER ARCHITECTURE... 61
9.2 WMLSCRIPT AND URLS... 62

9.2.1 URL Schemes.. 62
9.2.2 Fragment Anchors.. 62
9.2.3 URL Call Syntax... 62
9.2.4 URL Calls and Parameter Passing .. 65
9.2.5 Character Escaping.. 65
9.2.6 Relative URLs... 65

9.3 BYTECODE SEMANTICS ... 65
9.3.1 Passing of Function Arguments.. 66
9.3.2 Automatic Function Return Value .. 66
9.3.3 Initialisation of Variables... 66

9.4 ACCESS CONTROL... 66

10 . WMLSCRIPT BINARY FORMAT.. 67

10.1 CONVENTIONS... 67
10.1.1 Used Data Types .. 67
10.1.2 Multi-byte Integer Format.. 67
10.1.3 Character Encoding ... 68
10.1.4 Notational Conventions .. 68

10.2 WMLSCRIPT BYTECODE... 68
10.3 BYTECODE HEADER .. 69
10.4 CONSTANT POOL... 69

10.4.1 Constants .. 70
10.4.1.1 Integers ..70

10.4.1.1.1 8 Bit Signed Integer ...70
10.4.1.1.2 16 Bit Signed Integer ...70
10.4.1.1.3 32 Bit Signed Integer ...70

10.4.1.2 Floats ...71
10.4.1.3 Strings..71

10.4.1.3.1 UTF-8 Strings ..71
10.4.1.3.2 UCS-2 Strings ..71
10.4.1.3.3 UCS-4 Strings ..71
10.4.1.3.4 Empty Strings...72

10.5 PRAGMA POOL .. 72
10.5.1 Pragmas ... 72

10.5.1.1 Access Control Pragmas ..72
10.5.1.1.1 Access Control Disabled ..73
10.5.1.1.2 Access Domain...73
10.5.1.1.3 Access Path ..73

10.5.1.2 Meta-Information Pragmas ..73
10.5.1.2.1 User Agent Property...73
10.5.1.2.2 User Agent Property and Scheme...73

10.6 FUNCTION POOL.. 74
10.6.1 Function Name Table ... 74

10.6.1.1 Function Names...74
10.6.2 Functions.. 75

10.6.2.1 Code Array...75
10.7 LIMITATIONS ... 75

11 . WMLSCRIPT INSTRUCTION SET.. 76

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page 5(113)Version 30-Apr-1998

11.1 CONVERSION RULES ..76
11.2 FATAL ERRORS ..76
11.3 OPTIMISATIONS..77
11.4 NOTATIONAL CONVENTIONS..78
11.5 INSTRUCTIONS ...78

11.5.1 Control Flow Instructions ...79
11.5.2 Function Call Instructions ..82
11.5.3 Variable Access and Manipulation ...85
11.5.4 Access To Constants..88
11.5.5 Arithmetic Instructions..91
11.5.6 Bitwise Instructions...95
11.5.7 Comparison Instructions...97
11.5.8 Logical Instructions ..99
11.5.9 Stack Instructions..100
11.5.10 Access to Operand Type..101
11.5.11 Function Return Instructions ..102
11.5.12 Miscellaneous Instructions..102

12 . BYTECODE VERIFICATION ...103

12.1 INTEGRITY CHECK ...103
12.2 RUNTIME VALIDITY CHECKS..104

13 . RUN-TIME ERROR DETECTION AND HANDLING..105

13.1 ERROR DETECTION105
13.2 ERROR HANDLING ...105
13.3 FATAL ERRORS ..105

13.3.1 Bytecode Errors ..105
13.3.1.1 Verification Failed...106
13.3.1.2 Fatal Library Function Error..106
13.3.1.3 Invalid Function Arguments ..106
13.3.1.4 External Function Not Found106
13.3.1.5 Unable to Load Compilation Unit ...106
13.3.1.6 Access Violation..107
13.3.1.7 Stack Underflow..107

13.3.2 Program Specified Abortion ...107
13.3.2.1 Programmed Abort ..107

13.3.3 Memory Exhaustion Errors...107
13.3.3.1 Stack Overflow..107
13.3.3.2 Out of Memory ..108

13.3.4 External Exceptions ..108
13.3.4.1 User Initiated ...108
13.3.4.2 System Initiated ...108

13.4 NON-FATAL ERRORS ...108
13.4.1 Computational Errors ...108

13.4.1.1 Divide by Zero...108
13.4.1.2 Integer Overflow..109
13.4.1.3 Floating-Point Overflow..109
13.4.1.4 Floating-Point Underflow..109

13.4.2 Constant Reference Errors..109
13.4.2.1 Not a Number Floating-Point Constant ...109
13.4.2.2 Infinite Floating-Point Constant ..110
13.4.2.3 Illegal Floating-Point Reference..110

13.4.3 Conversion Errors...110
13.4.3.1 Integer Too Large ..110
13.4.3.2 Floating-Point Too Large ..110
13.4.3.3 Floating-Point Too Small ..111

13.5 LIBRARY CALLS AND ERRORS..111

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page 6(113)Version 30-Apr-1998

14 . SUPPORT FOR INTEGER ONLY DEVICES.. 112

15 . CONTENT TYPES .. 113

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page 7(113)Version 30-Apr-1998

1. Scope

Wireless Application Protocol (WAP) is a result of continuous work to define an industry-wide specification for
developing applications that operate over wireless communication networks. The scope for the WAP Forum is to define a
set of standards to be used by service applications. The wireless market is growing very quickly and reaching new
customers and services. To enable operators and manufacturers to meet the challenges in advanced services, differentiation
and fast/flexible service creation, WAP defines a set of protocols in transport, session and application layers. For
additional information on the WAP architecture, refer to Wireless Application Protocol Architecture Specification [WAP].

This paper is a specification of the WMLScript language. It is part of the WAP application layer and it can be used to add
client side procedural logic. The language is based on ECMAScript [ECMA262] but it has been modified to better support
low bandwidth communication and thin clients. WMLScript can be used together with Wireless Markup Language [WML]
to provide intelligence to the clients but it has also been designed so that it can be used as a standalone tool.

One of the main differences between ECMAScript and WMLScript is the fact that WMLScript has a defined bytecode and
an interpreter reference architecture. This way the narrowband communication channels available today can be optimally
utilised and the memory requirements for the client kept to the minimum. Many of the advanced features of the
ECMAScript language have been dropped to make the language smaller, easier to compile into bytecode and easier to
learn. For example, WMLScript is a procedural language and it supports locally installed standard libraries.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page 8(113)Version 30-Apr-1998

2. Document Status
This document is available online in the following formats:

• PDF format at http://www.wapforum.org/.

 2.1 Copyright Notice
© Copyright Wireless Application Forum Ltd, 1998 all rights reserved.

 2.2 Errata
Known problems associated with this document are published at http://www.wapforum.org/.

 2.3 Comments
Comments regarding this document can be submitted to WAP Forum in the manner published at
http://www.wapforum.org/.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page 9(113)Version 30-Apr-1998

3. References

 3.1 Normative references

[ECMA262] Standard ECMA-262: "ECMAScript Language Specification", ECMA, June 1997
[IEEE754] ANSI/IEEE Std 754-1985: "IEEE Standard for Binary Floating-Point Arithmetic". Institute of

Electrical and Electronics Engineers, New York (1985).
[ISO10646] "Information Technology - Universal Multiple-Octet Coded Character Set (UCS) - Part 1:

Architecture and Basic Multilingual Plane", ISO/IEC 10646-1:1993.
[RFC1738] "Uniform Resource Locators (URL)", T. Berners-Lee, et al., December 1994. URL:

ftp://ftp.isi.edu/in-notes/rfc1738.txt
[RFC1808] "Relative Uniform Resource Locators", R. Fielding, June 1995. URL:

ftp://ftp.isi.edu/in-notes/rfc1808.txt
[RFC2279] "UTF-8, a transformation format of Unicode and ISO 10646", F. Yergeau, January 1998. URL:

ftp://ftp.isi.edu/in-notes/rfc2279.txt
[RFC2068] "Hypertext Transfer Protocol - HTTP/1.1", R. Fielding, et al., January 1997. URL:

ftp://ftp.isi.edu/in-notes/rfc2068.txt
[RFC2119] "Key words for use in RFCs to Indicate Requirement Levels", S. Bradner, March 1997. URL:

ftp://ftp.isi.edu/in-notes/rfc2119.txt
[UNICODE] "The Unicode Standard: Version 2.0", The Unicode Consortium, Addison-Wesley Developers Press,

1996. URL: http://www.unicode.org/
[WAP] "Wireless Application Protocol Architecture Specification", WAP Forum, 30-April-1998. URL:

http://www.wapforum.org/
[WML] "Wireless Markup Language Specification", WAP Forum, 30-April-1998. URL:

http://www.wapforum.org/
[WMLSLibs] "WMLScript Standard Libraries Specification", WAP Forum, 30-April-1998. URL:

http://www.wapforum.org/
[WSP] "Wireless Session Protocol", WAP Forum, 30-April-1998. URL: http://www.wapforum.org/
[XML] "Extensible Markup Language (XML), W3C Proposed Recommendation 10-February-1998, REC-

xml-19980210", T. Bray, et al, February 10, 1998. URL: http://www.w3.org/TR/REC-xml

 3.2 Informative References

[HTML4] "HTML 4.0 Specification, W3C Recommendation 18-December-1997, REC-HTML40-971218", D.
Raggett, et al., September 17, 1997. URL: http://www.w3.org/TR/REC-html40

[JavaScript] "JavaScript: The Definitive Guide", David Flanagan. O’Reilly & Associates, Inc. 1997
[WAE] "Wireless Application Environment Specification", WAP Forum, 30-April-1998. URL:

http://www.wapforum.org/

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
10(113)

Version 30-Apr-1998

4. Definitions and abbreviations

 4.1 Definitions
The following are terms and conventions used throughout this specification.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY" and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

Bytecode - content encoding where the content is typically a set of low-level opcodes (ie, instructions) and operands for a
targeted hardware (or virtual) machine.

Client - a device (or application) that initiates a request for connection with a server.

Content - subject matter (data) stored or generated at an origin server. Content is typically displayed or interpreted by a
user agent in response to a user request.

Content Encoding - when used as a verb, content encoding indicates the act of converting a data object from one format
to another. Typically the resulting format requires less physical space than the original, is easier to process or store and/or
is encrypted. When used as a noun, content encoding specifies a particular format or encoding standard or process.

Content Format – actual representation of content.

Device - a network entity that is capable of sending and receiving packets of information and has a unique device address.
A device can act as both a client or a server within a given context or across multiple contexts. For example, a device can
service a number of clients (as a server) while being a client to another server.

JavaScript - a de facto standard language that can be used to add dynamic behaviour to HTML documents. JavaScript is
one of the originating technologies of ECMAScript.

Origin Server - the server on which a given resource resides or is to be created. Often referred to as a web server or an
HTTP server.

Resource - a network data object or service that can be identified by a URL. Resources may be available in multiple
representations (e.g. multiple languages, data formats, size and resolutions) or vary in other ways.

Server - a device (or application) that passively waits for connection requests from one or more clients. A server may
accept or reject a connection request from a client.

User - a user is a person who interacts with a user agent to view, hear or otherwise use a rendered content.

User Agent - a user agent (or content interpreter) is any software or device that interprets WML, WMLScript or resources.
This may include textual browsers, voice browsers, search engines, etc.

Web Server - a network host that acts as an HTTP server.

WML - the Wireless Markup Language is a hypertext markup language used to represent information for delivery to a
narrowband device, e.g. a phone.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
11(113)

Version 30-Apr-1998

WMLScript - a scripting language used to program the mobile device. WMLScript is an extended subset of the
JavaScript scripting language.

 4.2 Abbreviations
For the purposes of this specification, the following abbreviations apply:

API Application Programming Interface
BNF Backus-Naur Form
ECMA European Computer Manufacturer Association
HTML HyperText Markup Language [HTML4]
HTTP HyperText Transfer Protocol [RFC2068]
IANA Internet Assigned Number Authority
LSB Least Significant Bits
MSB Most Significant Bits
RFC Request For Comments
UI User Interface
URL Uniform Resource Locator [RFC1738]
UTF UCS Transformation Format
UCS Universal Multiple-Octet Coded Character Set
W3C World Wide Web Consortium
WWW World Wide Web
WSP Wireless Session Protocol
WTP Wireless Transport Protocol
WAP Wireless Application Protocol
WAE Wireless Application Environment
WTA Wireless Telephony Applications
WTAI Wireless Telephony Applications Interface
WBMP Wireless BitMaP

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
12(113)

Version 30-Apr-1998

5. Overview

 5.1 Why Scripting?
WMLScript is designed to provide general scripting capabilities to the WAP architecture. Specifically, WMLScript can be
used to complement the Wireless Markup Language [WML]. WML is a markup language based on Extensible Markup
Language [XML]. It is designed to be used to specify application content for narrowband devices like cellular phones and
pagers. This content can be represented with text, images, selection lists etc. Simple formatting can be used to make the
user interfaces more readable as long as the client device used to display the content can support it. However, all this
content is static and there is no way to extend the language without modifying WML itself. The following list contains
some capabilities that are not supported by WML:

• Check the validity of user input (validity checks for the user input)
• Access to facilities of the device. For example, on a phone, allow the programmer to make phone calls, send

messages, add phone numbers to the address book, access the SIM card etc.
• Generate messages and dialogs locally thus reducing the need for expensive round-trip to show alerts, error

messages, confirmations etc.
• Allow extensions to the device software and configuring a device after it has been deployed.

 WMLScript was designed to overcome these limitations and to provide programmable functionality that can be used over
narrowband communication links in clients with limited capabilities.

 5.2 Benefits of using WMLScript
 Many of the services that can be used with thin mobile clients can be implemented with WML. Scripting enhances the
standard browsing and presentation facilities of WML with behavioural capabilities. They can be used to supports more
advanced UI functions, add intelligence to the client, provide access to the device and its peripheral functionality and
reduces the amount of bandwidth needed to send data between the server and the client.

 WMLScript is loosely based on ECMAScript [ECMA262] and does not require the developers to learn new concepts to be
able to generate advanced mobile services.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
13(113)

Version 30-Apr-1998

 6. WMLScript Core
 One objective for the WMLScript language is to be close to the core of the ECMAScript Language specification
[ECMA262]. The part in the ECMAScript Language specification that defines basic types, variables, expressions and
statements is called core and can almost be used "as is" for the WMLScript specification. This section gives an overview
of the core parts of WMLScript.

 See chapter WMLScript Grammar (8) for syntax conventions and precise language grammar.

 6.1 Lexical Structure
 This section describes the set of elementary rules that specify how you write programs in WMLScript.

 6.1.1 Case Sensitivity

 WMLScript is a case-sensitive language. All language keywords, variables and function names must use the proper
capitalisation of letters.

 6.1.2 Whitespace and Line Breaks

 WMLScript ignores spaces, tabs, newlines etc. that appear between tokens in programs, except those that are part of string
constants.

 Syntax:

 WhiteSpace ::
 <TAB>
<VT>
<FF>
<SP>
<LF>
<CR>

 LineTerminator ::
 <LF>
<CR>
<CR><LF>

 6.1.3 Usage of Semicolons

 The following statements in WMLScript have to be followed by a semicolon:1

• Empty statement (see 6.5.1)
• Expression statement (see 6.5.2)
• Variable statement (see 6.5.4)
• Break statement (see 6.5.8)

 1 Compatibility note: ECMAScript supports optional semicolons.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
14(113)

Version 30-Apr-1998

• Continue statement (see 6.5.9)
• Return statement (see 6.5.10)

 6.1.4 Comments

 The language defines two comment constructs: line comments (ie, start with // and end in the end of the line) and block
comments (ie, consisting of multiple lines starting with /* and ending with */). It is illegal to have nested block comments.2

 Syntax:

 Comment ::
 MultiLineComment
SingleLineComment

 MultiLineComment ::
 /* MultiLineCommentCharsopt */

 SingleLineComment ::
 // SingleLineCommentCharsopt

 6.1.5 Literals

 6.1.5.1 Integer Literals

 Integer literals can be represented in three different ways: decimal, octal and hexadecimal integers.

 Syntax:

 DecimalIntegerLiteral ::
 0
NonZeroDigit DecimalDigitsopt

 NonZeroDigit :: one of
 1 2 3 4 5 6 7 8 9

 DecimalDigits ::
 DecimalDigit
DecimalDigits DecimalDigit

 DecimalDigit :: one of

 0 1 2 3 4 5 6 7 8 9

 HexIntegerLiteral ::
 0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

 HexDigit :: one of
 0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

 2 Compatibility note: ECMAScript also supports HTML comments.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
15(113)

Version 30-Apr-1998

 OctalIntegerLiteral ::
 0 OctalDigit
OctalIntegerLiteral OctalDigit

 OctalDigit :: one of
 0 1 2 3 4 5 6 7

 The minimum and maximum sizes for integer literals and values are specified in the section 6.2.7.1. An integer literal that
is not within the specified value range must result in a compile time error.

 6.1.5.2 Floating-Point Literals

 Floating-point literals can contain a decimal point as well as an exponent.

 Syntax:

 DecimalFloatLiteral ::
 DecimalIntegerLiteral . DecimalDigitsopt ExponentPartopt

. DecimalDigits ExponentPartopt

DecimalIntegerLiteral ExponentPart

 DecimalDigits ::
 DecimalDigit
DecimalDigits DecimalDigit

 ExponentPart ::
 ExponentIndicator SignedInteger

 ExponentIndicator :: one of
 e E

 SignedInteger ::
 DecimalDigits
+ DecimalDigits
- DecimalDigits

 The minimum and maximum sizes for floating-point literals and values are specified in the section 6.2.7.2. A floating-point
literal that is not within the specified value range must result in a compile time error. A floating-point literal underflow
results in a floating-point literal zero (0.0).

 6.1.5.3 String Literals

 Strings are any sequence of zero or more characters enclosed within double (") or single quotes (’).

 Syntax:

 StringLiteral ::
 " DoubleStringCharactersopt "
’ SingleStringCharactersopt ’

 Examples of valid strings are:

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
16(113)

Version 30-Apr-1998

"Example" ’Specials: \x00 \’ \b’ "Quote: \""

 Since some characters are not representable within strings, WMLScript supports special escape sequences by which these
characters can be represented:

 Sequence Character represented3 Unicode Symbol

 \’ Apostrophe or single quote \u0027 '
 \" Double quote \u0022 "
 \\ Backslash \u005C \
 \/ Slash \u002F /
 \b Backspace \u0008
 \f Form feed \u000C
 \n Newline \u000A
 \r Carriage return \u000D
 \t Horizontal tab \u0009

 \xhh The character with the encoding specified by two
hexadecimal digits hh (Latin-1 ISO8859-1)

 \ooo The character with the encoding specified by the
three octal digits ooo (Latin-1 ISO8859-1)

 \uhhhh The Unicode character with the encoding specified
by the four hexadecimal digits hhhh.

 An escape sequence occurring within a string literal always contributes a character to the string value of the literal and is
never interpreted as a line terminator or as a quote mark that might terminate the string literal.

 6.1.5.4 Boolean Literals

 A "truth value" in WMLScript is represented by a boolean literal. The two boolean literals are: true and false.

 Syntax:

 BooleanLiteral ::
 true
false

 6.1.5.5 Invalid Literal

 WMLScript supports a special invalid literal to denote an invalid value.

 Syntax:

 InvalidLiteral ::
 invalid

 6.1.6 Identifiers

 Identifiers are used to name and refer to three different elements of WMLScript: variables (see 6.2), functions (see 6.4)
and pragmas (see 6.7). Identifiers4 cannot start with a digit but can start with an underscore (_).

3 Compatibility note: ECMAScript supports also non-escape characters preceded by a backslash.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
17(113)

Version 30-Apr-1998

 Syntax:

 Identifier ::
 IdentifierName but not ReservedWord

 IdentifierName ::
 IdentifierLetter
IdentifierName IdentifierLetter
IdentifierName DecimalDigit

 IdentifierLetter :: one of

 a b c d e f g h i j k l m n o p q r s t u v w x y z
 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
 _

 DecimalDigit :: one of

 0 1 2 3 4 5 6 7 8 9

 Examples of legal identifiers are:

timeOfDay speed quality HOME_ADDRESS var0 _myName ____

 The compiler looks for the longest string of characters make up a valid identifier. Identifiers cannot contain any special
characters except underscore (_). WMLScript keywords and reserved words cannot be used as identifiers. Examples of
illegal identifiers are:

while for if my~name $sys 123 3pieces take.this

 Uppercase and lowercase letters are distinct which means that the identifiers speed and Speed are different.

 6.1.7 Reserved Words

 WMLScript specifies a set of reserved words that have a special meaning in programs and they cannot be used as
identifiers. Examples of such words are (full list can be found from the WMLScript grammar specification, see chapter 8):

break continue false true while

 6.1.8 Name Spaces

 WMLScript supports name spaces for identifiers that are used for different purposes. The following name spaces are
supported:

• Function names (see 6.4)
• Function parameters (see 6.4) and variables (see 6.2)
• Pragmas (see 6.7)

Thus, the same identifiers can be used to specify a function name, variable/parameter name or a name for a pragma within
the same compilation unit:

 4 Compatibility note: ECMAScript supports the usage of $ character in any position of the name, too.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
18(113)

Version 30-Apr-1998

use url myTest "http://www.host.com/script"

function myTest(myTest) {
 var value = myTest#myTest(myTest)
 return value;
};

 6.2 Variables and Data Types
 This section describes the two important concepts of WMLScript language: variables and internal data types. A variable is
a name associated with a data value. Variables can be used to store and manipulate program data. WMLScript supports
local variables5 only declared inside functions or passed as function parameters (see 6.4).

 6.2.1 Variable Declaration

Variable declaration is compulsory6 in WMLScript. Variable declaration is done simply by using the var keyword and a
variable name (see section 6.5.4 for information about variable statements). Variable names follow the syntax defined for
all identifiers (see section 6.1.6):

var x;
var price;
var x,y;
var size = 3;

 Variables must be declared before they can be used. Initialisation of variables is optional. Uninitialised variables are
automatically initialised to contain an empty string ("").

 6.2.2 Variable Scope and Lifetime

The scope of WMLScript variables is the remainder of the function (see 6.4) in which they have been declared. All
variable names within a function must be unique. Block statements (see 6.5.3) are not used for scoping.

function priceCheck(givenPrice) {
 if (givenPrice > 100) {
 var newPrice = givenPrice;
 } else {
 newPrice = 100;
 };
 return newPrice;
};

The lifetime of a variable is the time between the variable declaration and the end of the function.

 5 Compatibility note: ECMAScript supports global variables, too.

 6 Compatibility note: ECMAScript supports automatic declaration, too.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
19(113)

Version 30-Apr-1998

function foo() {
 x = 1; // Error: usage before declaration
 var x,y;
 if (x) {
 var y; // Error: redeclaration
 };
};

 6.2.3 Variable Access

Variables are accessible only within the function in which they have been declared. Accessing the content of a variable is
done by using the variable name:

var myAge = 37;
var yourAge = 63;
var ourAge = myAge + yourAge;

 6.2.4 Variable Type

 WMLScript is a weakly typed language. The variables are not typed but internally the following basic data types are
supported: boolean, integer, floating-point and string. In addition to these, a fifth data type invalid is specified to be used
in cases an invalid data type is needed to separate it from the other internal data types. Since these data types are supported
only internally, the programmer does not have to specify variable types and any variable can contain any type of data at
any given time. WMLScript will attempt automatically convert between the different types as needed.

var flag = true; // Boolean
var number = 12; // Integer
var temperature = 37.7; // Float
number = "XII"; // String
var except = invalid; // Invalid

 6.2.5 L-Values

Some operators (see 6.3.1 for more information about assignment operators) require that the left operand is a reference to a
variable (L-value) and not the variable value. Thus, in addition to the five data types supported by WMLScript, a sixth
type variable is used to specify that a variable name must be provided.

result += 111; // += operator requires a variable

 6.2.6 Type Equivalency

WMLScript supports operations on different data types. All operators (see section 6.3) specify the accepted data types for
their operands. Automatic data type conversions (see chapter 7) are used to convert operand values to required data types.

 6.2.7 Numeric Values

 WMLScript supports two different numeric variable values: integer and floating-point values7. Variables can be initialised
with integer and floating-point literals and several operators can be used to modify their values during the run-time.
Conversion rules between integer and floating-point values are specified in chapter 7.

7 Convention: In cases where the value can be either an integer or a floating-point, a more generic term number is used instead.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
20(113)

Version 30-Apr-1998

var pi = 3.14;
var length = 0;
var radius = 2.5;
length = 2*pi*radius;

 6.2.7.1 Integer Size

 The size of the integer is 32 bits (two’s complement). This means that the supported value range8 for integer values is:
-2147483648 and 2147483647. Lang [WMLSLibs] library functions can be used to get these values during the run-time:

Lang.maxInt() Maximum representable integer value
Lang.minInt() Minimum representable integer value

 6.2.7.2 Floating-point Size

 The minimum/maximum values9 and precision for floating-point values are specified by [IEEE754]. WMLScript supports
32-bit single precision floating-point format:

• Maximum value: 3.40282347E+38
• Minimum positive nonzero value (at least the normalised precision must be supported): 1.17549435E-38 or smaller

 The Float [WMLSLibs] library can be used to get these values during the run-time:

Lang.maxFloat() Maximum representable floating-point value supported.
Lang.minFloat() Smallest positive nonzero floating-point value supported.

 The special floating-point number types are handled by using the following rules:

• If an operation results in a floating-point number that is not part of the set of finite real numbers (not a number,
positive infinity etc.) supported by the single precision floating-point format then the result is an invalid value.

• If an operation results in a floating-point underflow the result is zero (0.0).
• Negative and positive zero are equal and undistinguishable.

 6.2.8 String Values

 WMLScript supports strings that can contain letters, digits, special characters etc. Variables can be initialised with string
literals and string values can be manipulated both with WMLScript operators and functions specified in the standard String
library [WMLSLibs].

var msg = "Hello";
var len = String.length(msg);
msg = msg + ’ Worlds!’;

 8 Compatibility note: ECMAScript does not specify maximum and minimum values for integers. All numbers are represented as floating-point values.

 9 Compatibility note: ECMAScript uses double-precision 64-bit format [IEEE754] floating-point values for all numbers.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
21(113)

Version 30-Apr-1998

 6.2.9 Boolean Values

 Boolean values can be used to initialise or assign a value to a variable or in statements which require a boolean value as
one of the parameters. Boolean value can be a literal or the result of a logical expression evaluation (see 6.3.3 for more
information).

var truth = true;
var lie = !truth;

 6.3 Operators and Expressions
 The following sections describe the operators supported by WMLScript and how they can be used to form complex
expressions.

 6.3.1 Assignment Operators

 WMLScript supports several ways to assign a value to a variable. The simplest one is the regular assignment (=) but
assignments with operation are also supported:

 Operator Operation

 = assign
 += add (numbers)/concatenate (strings) and assign
 -= subtract and assign
 *= multiply and assign
 /= divide and assign

 div= divide (integer division) and assign
 %= remainder (the sign of the result equals the sign of the dividend) and assign
 <<= bitwise left shift and assign
 >>= bitwise right shift with sign and assign

 >>>= bitwise right shift zero fill and assign
 &= bitwise AND and assign
 ̂ = bitwise XOR and assign
 |= bitwise OR and assign

 Assignment does not necessarily imply sharing of structure nor does assignment of one variable change the binding of any
other variable.

var a = "abc";
var b = a;
b = "def"; // Value of a is "abc"

 6.3.2 Arithmetic Operators

 WMLScript supports all the basic binary arithmetic operations:

 Operator Operation

 + add (numbers)/concatenation (strings)
 - subtract

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
22(113)

Version 30-Apr-1998

 Operator Operation

 * multiply
 / divide

 div integer division

 In addition to these, a set of more complex binary operations are supported, too:

 Operator Operation

 % remainder, the sign of the result equals the sign of the dividend
 << bitwise left shift
 >> bitwise right shift with sign
 >>> bitwise shift right with zero fill
 & bitwise AND
 | bitwise OR
 ̂ bitwise XOR

 The basic unary operations supported are:

 Operator Operation

 + plus
 - minus
 -- pre-or-post decrement
 ++ pre-or-post increment
 ~ bitwise NOT

 Examples:

var y = 1/3;
var x = y*3+(++b);

 6.3.3 Logical Operators

 WMLScript supports the basic logical operations:

 Operator Operation

 && logical AND
 || logical OR
 ! logical NOT (unary)

 Logical AND operator evaluates the first operand and tests the result. If the result is false, the result of the operation is
false and the second operand is not evaluated. If the first operand evaluates to true, the result of the operation is the
result of the evaluation of the second operand. If the first operand evaluates to invalid, the second operand is not
evaluated and the result of the operation is invalid.

 Similarly, the logical OR evaluates the first operand and tests the result. If the result is true, the result of the operation is
true and the second operand is not evaluated. If the first operand evaluates to false, the result of the operation is the
result of the evaluation of the second operand. If the first operand evaluates to invalid, the second operand is not
evaluated and the result of the operation is invalid.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
23(113)

Version 30-Apr-1998

weAgree = (iAmRight && yourAreRight) ||
 (!iAmRight && !youAreRight);

 WMLScript requires a value of boolean type for logical operations. Automatic conversions from other types to boolean
type and vice versa are supported (see 7).

 Notice: If the value of the first operand for logical AND or OR is invalid, the second operand is not evaluated and the
result of the operand is invalid:

var a = (1/0) || foo(); // result: invalid, no call to foo()
var b = true || (1/0); // true
var c = false || (1/0); // invalid

 6.3.4 String Operators

 WMLScript supports string concatenation as a built-in operation. The + and += operators used with strings perform a
concatenation on the strings. Other string operations10 are supported by a standard String library (see [WMLSLibs]).

var str = "Beginning" + "End";
var chr = String.charAt(str,10); // chr = "E"

 6.3.5 Comparison Operators

 WMLScript supports all the basic comparison operations:

 Operator Operation

 < less than
 <= less than or equal
 == equal
 >= greater or equal
 > greater than
 != inequality

 Comparison operators use the following rules:

• Boolean: true is larger than false
• Integer: Comparison is based on the given integer values
• Floating-point: Comparison is based on the given floating-point values
• String: Comparison is based on the order of [UNICODE] character codes of the given string values
• Invalid: If at least one of the operands is invalid then the result of the comparison is invalid

 10 Compatibility note: ECMAScript supports String objects and a length attribute for each string. WMLScript does not support objects. However,
similar functionality is provided by WMLScript libraries.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
24(113)

Version 30-Apr-1998

 Examples:
var res = (myAmount > yourAmount);
var val = ((1/0) == invalid); // val = invalid

 6.3.6 Array Operators

 WMLScript does not support arrays11 as such. However, the standard String library (see [WMLSLibs]) supports functions
by which array like behaviour can be implemented by using strings. A string can contain elements that are separated by a
separator specified by the application programmer. For this purpose, the String library contains functions by which
creation and management of string arrays can be done.

function dummy() {
 var str = "Mary had a little lamb";
 var word = String.elementAt(str,4," ");
};

 6.3.7 Comma Operator

 WMLScript supports the comma (,) operator by which multiple evaluations can be combined into one expression. The
result of the comma operator is the value of the second operand:

for (a=1, b=100; a < 10; a++,b++) {
 … do something …
};

 Commas used in the function call to separate parameters and in the variable declarations to separate multiple variable
declarations are not comma operators. In these cases, the comma operator must be placed inside the parenthesis:

var a=2;
var b=3, c=(a,3);
myFunction("Name", 3*(b*a,c)); // Two parameters: "Name",9

 6.3.8 Conditional Operator

 WMLScript supports the conditional (?:) operator which takes three operands. The operator selectively evaluates one of
the given two operands based on the boolean value of the first operand. If the value of the first operand (condition) is
true then the result of the operation is the result of the evaluation of the second operand. If the value of the first operand
is false or invalid then the result of the operation is the result of the evaluation of the third operand.

myResult = flag ? "Off" : "On (value=" + level + ")";

 Notice: This operator behaves like an if statement (see 6.5.5). The third operand is evaluated if the evaluation of the
condition results in false or invalid.

 6.3.9 typeof Operator

 Although WMLScript is a weakly typed language, internally the following basic data types are supported: boolean,
integer, floating-point, string and invalid. Typeof (typeof) operator returns an integer value12 that describes the type of the
given expression. The possible results are:

 11 Compatibility note: ECMAScript supports arrays.
12 Compatibility note: ECMAScript specifies that the typeof operator returns a string representing the variable type.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
25(113)

Version 30-Apr-1998

 Type Code

 Integer: 0
 Floating-point: 1

 String: 2
 Boolean: 3
 Invalid: 4

 Typeof operator does not try to convert the result from one type to another but returns the type as it is after the evaluation
of the expression.

var str = "123";
var myType = typeof str; // myType = 2

 6.3.10 isvalid Operator

 This operator can be used to check the type of the given expression. It returns a boolean value false if the type of the
expression is invalid, otherwise true is returned. isvalid operator does not try to convert the result from one type to
another but returns the type as it is after the evaluation of the expression.

var str = "123";
var ok = isvalid str; // true
var tst = isvalid (1/0); // false

 6.3.11 Expressions

 WMLScript supports most of the expressions supported by other programming languages. The simplest expressions are
constants and variable names, which simply evaluate to either the value of the constant or the variable.

567
66.77
"This is too simple"
’This works too’
true
myAccount

 Expressions that are more complex can be defined by using simple expressions together with operators and function calls.

myAccount + 3
(a + b)/3
initialValue + nextValue(myValues);

 6.3.12 Expression Bindings

 The following table contains all operators supported by WMLScript. The table also contains information about operator
precedence (the order of evaluation) and the operator associativity (left-to-right (L) or right-to-left (R)):

 Precedence13 Associativity Operator Operand
types

 Result type Operation performed

 13 Binding: 0 binds tightest

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
26(113)

Version 30-Apr-1998

 Precedence13 Associativity Operator Operand
types

 Result type Operation performed

 1 R ++ number number* pre- or post-increment (unary)
 1 R -- number number* pre- or post-decrement (unary)
 1 R + number number* unary plus
 1 R - number number* unary minus (negation)
 1 R ~ integer integer* bitwise NOT (unary)
 1 R ! boolean boolean* logical NOT (unary)
 1 R typeof any integer return internal data type (unary)
 1 R isvalid any boolean check for validity (unary)
 2 L * numbers number* multiplication
 2 L / numbers floating-

point*
 division

 2 L div integers integer* integer division
 2 L % integers integer* remainder
 3 L - numbers number* subtraction
 3 L + numbers or

strings
 number or

string*
 addition (numbers) or string
concatenation

 4 L << integers integer* bitwise left shift
 4 L >> integers integer* bitwise right shift with sign
 4 L >>> integers integer* bitwise right shift with zero fill
 5 L <, <= numbers or

strings
 boolean* less than, less than or equal

 5 L >, >= numbers or
strings

 boolean* greater than, greater or equal

 6 L == numbers or
strings

 boolean* equal (identical values)

 6 L != numbers or
strings

 boolean* not equal (different values)

 7 L & integers integer* bitwise AND
 8 L ̂ integers integer* bitwise XOR
 9 L | integers integer* bitwise OR
 10 L && booleans boolean* logical AND
 11 L || booleans boolean* logical OR
 12 L ? : boolean,

any, any
 any* conditional expression

 13 R = variable, any any assignment
 13 R *=, /=,

%=, -=,
div=

 variable,
number

 number* assignment with numeric
operation

 13 R += variable,
number or

string

 number or
string*

 assignment with addition or
concatenation

 13 R <<=, >>=,
>>>=, &=,

^=, |=

 variable,
integer

 integer* assignment with bitwise
operation

 14 L , any any multiple evaluation

 * The operator can return an invalid value in case the data type conversions fail (see chapter 7 for
more information about conversion rules) or one of the operands is invalid.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
27(113)

Version 30-Apr-1998

 6.4 Functions
 A WMLScript function is a named part of the WMLScript compilation unit that can be called to perform a specific set of
statements and to return a value. The following sections describe how WMLScript functions can be declared and used.

 6.4.1 Declaration

 Function declaration can be used to declare a WMLScript function name (Identifier) with the optional parameters
(FormalParameterList) and a block statement that is executed when the function is called. All functions have the following
characteristics:

• Function declarations cannot be nested.
• Function names must be unique within one compilation unit.
• All parameters to functions are passed by value.
• Function calls must pass exactly the same number of arguments to the called function as specified in the function

declaration.
• Function parameters behave like local variables that have been initialised before the function body (block of

statements) is executed.
• A function always returns a value. By default it is an empty string (""). However, a return statement can be used to

specify other return values.

 Functions in WMLScript are not data types14 but a syntactical feature of the language.

 Syntax:

 FunctionDeclaration :
 externopt function Identifier (FormalParameterListopt) Block ;opt

 FormalParameterList :
 Identifier
FormalParameterList , Identifier

 Arguments: The optional extern keyword can be used to specify a function to be externally accessible. External
functions can be called from outside the compilation unit in which they are defined. Identifier is the name specified for the
function. FormalParameterList (optional) is a comma-separated list of argument names. Block is the body of the function
that is executed when the function is called and the parameters have been initialised by the passed arguments.

 Examples:

function currencyConverter(currency, exchangeRate) {
 return currency*exchangeRate;
};

extern function testIt() {
 var UDS = 10;
 var FIM = currencyConverter(USD, 5.3);
};

 6.4.2 Function Calls

 The way a function is called depends on where the called (target) function is declared. The following sections describe the
three function calls supported by WMLScript: local script function call, external function call and library function call.

 14 Compatibility note: Functions in ECMAScript are actual data types.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
28(113)

Version 30-Apr-1998

 6.4.2.1 Local Script Functions

 Local script functions (defined inside the same compilation unit) can be called simply by providing the function name and
a comma separated list of arguments (number of arguments must match the number of parameters15 accepted by the
function).

 Syntax:

 LocalScriptFunctionCall :
 FunctionName Arguments

 FunctionName :
 Identifier

 Arguments :
 ()
(ArgumentList)

 ArgumentList :
 AssignmentExpression
ArgumentList , AssignmentExpression

 Functions inside the same compilation unit can be called before the function has been declared:

function test2(param) {
 return test1(param+1);
};

function test1(val) {
 return val*val;
};

 6.4.2.2 External Functions

 External function calls must be used when the called function is declared in an external compilation unit. The function call
is similar to a local function call but it must be prefixed with the name of the external compilation unit.

 Syntax:

 ExternalScriptFunctionCall :
 ExternalScriptName # FunctionName Arguments

 ExternalScriptName :
 Identifier

 Pragma use url (see 6.7) must be used to specify the external compilation unit. It defines the mapping between the
external unit and a name that can be used within function declarations. This name and the hash symbol (#) are used to
prefix the standard function call syntax:

 15 Compatibility note: ECMAScript supports a variable number of arguments in a function call.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
29(113)

Version 30-Apr-1998

use url OtherScript "http://www.host.com/script"

function test3(param) {
 return OtherScript#test2(param+1);
};

 6.4.2.3 Library Functions

 Library function calls must be used when the called function is a WMLScript standard library function [WMLSLibs].

 Syntax:

 LibraryFunctionCall :
 LibraryName . FunctionName Arguments

 LibraryName :
 Identifier

 A library function can be called by prefixing the function name with the name of the library (see 6.6 for more information)
and the dot symbol (.):

function test4(param) {
 return Float.sqrt(Lang.abs(param)+1);
};

 6.4.3 Default Return Value

 The default return value for a function is an empty string (""). Return values of functions can be ignored (ie, function call
as a statement):

function test5() {
 test4(4);
};

 6.5 Statements
 WMLScript statements consist of expressions and keywords used with the appropriate syntax. A single statement may span
multiple lines. Multiple statements may occur on a single line.

 The following sections define the statements available in WMLScript16: empty statement, expression statement, block
statement, break, continue, for, if...else, return, var, while.

 6.5.1 Empty Statement

 Empty statement is a statement that can be used where a statement is needed but no operation is required.

 16 Compatibility note: ECMAScript supports also for..in and with statements.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
30(113)

Version 30-Apr-1998

 Syntax:

 EmptyStatement :
 ;

 Examples:

while (!poll(device)) ; // Wait until poll() is true

 6.5.2 Expression Statement

 Expression statements are used to assign values to variables, calculate mathematical expressions, make function calls etc.

 Syntax:

 ExpressionStatement :
 Expression ;

 Expression :
 AssignmentExpression
Expression , AssignmentExpression

 Examples:

str = "Hey " + yourName;
val3 = prevVal + 4;
counter++;
myValue1 = counter, myValue2 = val3;
alert("Watch out!");
retVal = 16*Lang.max(val3,counter);

 6.5.3 Block Statement

 A set of statements enclosed in the curly brackets is a block statement. It can be used anywhere a single statement is
needed.

 Syntax:

 Block :
 { StatementListopt }

 StatementList :
 Statement
StatementList Statement

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
31(113)

Version 30-Apr-1998

 Example:
{
 var i = 0;
 var x = Lang.abs(b);
 popUp("Remember!");
}

 6.5.4 Variable Statement

 This statement declares variables with initialisation (optional, variables are initialised to empty string ("") by default). The
scope of the declared variable is the rest of the current function (see section 6.2.2 for more information about variable
scoping).

 Syntax:

 VariableStatement :
 var VariableDeclarationList ;

 VariableDeclarationList :
 VariableDeclaration
VariableDeclarationList , VariableDeclaration

 VariableDeclaration :
 Identifier VariableInitializeropt

 VariableInitializer :
 = ConditionalExpression

 Arguments: Identifier is the variable name. It can be any legal identifier. ConditionalExpression is the initial value of the
variable and can be any legal expression. This expression (or the default initialisation to an empty string) is evaluated
every time the variable statement is executed.

 Variable names must be unique within a single function.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
32(113)

Version 30-Apr-1998

 Examples:
function count(str) {
 var result = 0; // Initialized once
 while (str != "") {
 var ind = 0; // Initialized every time
 // modify string
 };
 return result
};

function example(param) {
 var a = 0;
 if (param > a) {
 var b = a+1; // Variables a and b can be used
 } else {
 var c = a+2; // Variables a, b and c can be used
 };
 return a; // Variable a, b and c are accessible
};

 6.5.5 If Statement

 This statement is used to specify conditional execution of statements. It consists of a condition and one or two statements
and executes the first statement if the specified condition is true. If the condition is false, the second (optional) statement is
executed.

 Syntax:

 IfStatement :
 if (Expression) Statement else Statement
if (Expression) Statement

 Arguments: Expression (condition) can be any WMLScript expression that evaluates (directly or after conversion) to a
boolean or an invalid value. If condition evaluates to true, the first statement is executed. If condition evaluates to
false or invalid, the second (optional) else statement is executed. Statement can be any WMLScript statement,
including another (nested) if statement. else is always tied to the closest if.

 Example:

if (sunShines) {
 myDay = "Good";
 goodDays++;
} else
 myDay = "Oh well...";

 6.5.6 While Statement

 This statement is used to create a loop that evaluates an expression and, if it is true, execute a statement. The loop
repeats as long as the specified condition is true.

 Syntax:

 WhileStatement :
 while (Expression) Statement

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
33(113)

Version 30-Apr-1998

 Arguments: Expression (condition) can be any WMLScript expression that evaluates (directly or after the conversion) to a
boolean or an invalid value. The condition is evaluated before each execution of the loop statement. If this condition
evaluates to true, the Statement is performed. When condition evaluates to false or invalid, execution continues
with the statement following Statement. Statement is executed as long as the condition evaluates to true.

 Example:

 var counter = 0;
 var total = 0;
 while (counter < 3) {
 counter++;
 total += c;
 };

 6.5.7 For Statement

 This statement is used to create loops. The statement consists of three optional expressions enclosed in parentheses and
separated by semicolons followed by a statement executed in the loop.

 Syntax:

 ForStatement :
 for (Expressionopt ; Expressionopt ; Expressionopt) Statement
for (var VariableDeclarationList ; Expressionopt ; Expressionopt) Statement

 Arguments: The first Expression or VariableDeclarationList (initialiser) is typically used to initialise a counter variable.
This expression may optionally declare new variables with the var keyword. The scope of the defined variables is the rest
of the function (see section 6.2.2 for more information about variable scoping).

 The second Expression (condition) can be any WMLScript expression that evaluates (directly or after the conversion) to a
boolean or an invalid value. The condition is evaluated on each pass through the loop. If this condition evaluates to true,
the Statement is performed. This conditional test is optional. If omitted, the condition always evaluates to true.

 The third Expression (increment-expression) is generally used to update or increment the counter variable. Statement is
executed as long as the condition evaluates to true.

 Example:

for (var index = 0; index < 100; index++) {
 count += index;
 myFunc(count);
};

 6.5.8 Break Statement

 This statement is used to terminate the current while or for loop and continue the program execution from the statement
following the terminated loop. It is an error to use break statement outside a while or a for statement.

 Syntax:

 BreakStatement :
 break ;

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
34(113)

Version 30-Apr-1998

 Example:
function testBreak(x) {
 var index = 0;
 while (index < 6) {
 if (index == 3) break;
 index++;
 };
 return index*x;
};

 6.5.9 Continue Statement

 This statement is used to terminate execution of a block of statements in a while or for loop and continue execution of the
loop with the next iteration. Continue statement does not terminate the execution of the loop:

• In a while loop, it jumps back to the condition.
• In a for loop, it jumps to the update expression.

 It is an error to use continue statement outside a while or a for statement.

 Syntax:

 ContinueStatement :
 continue ;

 Example:

var index = 0;
var count = 0;
while (index < 5) {
 index++;
 if (index == 3)
 continue;
 count += index;
};

 6.5.10 Return Statement

 This statement can be used inside the function body to specify the function return value. If no return statement is specified
or none of the function return statements is executed, the function returns an empty string by default.

 Syntax:

 ReturnStatement :
 return Expressionopt ;

 Example:

function square(x) {
 if (!(Lang.isFloat(x))) return invalid;
 return x * x;
};

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
35(113)

Version 30-Apr-1998

 6.6 Libraries

 WMLScript supports the usage of libraries17. Libraries are named collections of functions that belong logically together.
These functions can be called by using a dot (‘.’) separtor with the library name and the function name with parameters:

 An example of a library function call:

function dummy(str) {
 var i = String.elementAt(str,3," ");
};

 6.6.1 Standard Libraries

 Standard libraries are specified in more detail in the WMLScript Standard Libraries Specification [WMLSLibs].

 6.7 Pragmas
 WMLScript supports the usage of pragmas that specify compilation unit level information. Pragmas are specified at the
beginning of the compilation unit before any function declaration. All pragmas start with the keyword use and are
followed by pragma specific attributes.

 Syntax:

 CompilationUnit :
 Pragmasopt FunctionDeclarations

 Pragmas :
 Pragma
Pragmas Pragma

 Pragma :
 use PragmaDeclaration ;

 PragmaDeclaration :
 ExternalCompilationUnitPragma
AccessControlPragma
MetaPragma

 The following sections contain more information about the supported pragmas.

 6.7.1 External Compilation Units

 WMLScript compilation units can be accessed by using a URL. Thus, each WMLScript function can be accessed by
specifying the URL of the WMLScript resource and its name. A use url pragma must be used when calling a function
in an external compilation unit.

 17 Compatibility note: ECMAScript does not support libraries. It supports a set of predefined objects with attributes. WMLScript uses libraries to
support similar functionality.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
36(113)

Version 30-Apr-1998

 Syntax:

 ExternalCompilationUnitPragma :
 url Identifier StringLiteral

 The use url pragma specifies the location (URL) of the external WMLScript resource and gives it a local name. This
name can then be used inside the function declarations to make external function calls (see section 6.4.2.2).

use url OtherScript "http://www.host.com/app/script"

function test(par1, par2) {
 return OtherScript#check(par1-par2);
};

 The behaviour of the previous example is the following:

• The pragma specifies a URL to a WMLScript compilation unit.
• The function call loads the compilation unit by using the given URL (http://www.host.com/app/script)
• The content of the compilation unit is verified and the specified function (check) is executed

 The use url pragma has its own name space for local names. However, the local names must be unique within one
compilation unit. The following URLs are supported:

• Uniform Resource Locators [RFC1738] without a hash mark (#) or a fragment identifier. The schemes supported
are specified in [WAE].

• Relative URLs [RFC1808] without a hash mark (#) or a fragment identifier: The base URL is the URL that
identifies the current compilation unit.

 The given URL must be escaped according to the URL escaping rules. No compile time automatic escaping, URL syntax
or URL validity checking is performed.

 6.7.2 Access Control

 A WMLScript compilation unit can protect its content by using an access control pragma. Access control must be
performed before calling external functions. It is an error for a compilation unit to contain more than one access control
pragma.

 Syntax:

 AccessControlPragma :
 access AccessControlSpecifier

 AccessControlSpecifier :
 public
domain StringLiteral
path StringLiteral
domain StringLiteral path StringLiteral

 Every time a script calls an external function, an access control check is performed to determine whether the destination
compilation unit allows access from the caller. Access control pragma is used to specify domain and path attributes against
which these access control checks are performed. If a compilation unit has a domain and/or path attribute, the referring
compilation unit’s URL must match the values of the attributes. Matching is done as follows: the access domain is suffix-
matched against the domain name portion of the referring URL and the access path is prefix-matched against the path
portion of the referring URL. Domain and path attributes follow the URL capitalisation rules.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
37(113)

Version 30-Apr-1998

 Domain suffix matching is done using the entire element of each sub-domain and must match each element exactly (e.g.
www.wapforum.org shall match wapforum.org, but shall not match forum.org).

 Path prefix matching is done using entire path elements and must match each element exactly (e.g. /X/Y matches /X, but
does not match /XZ).

 The domain attribute defaults to the current compilation unit’s domain. The path attribute defaults to the value "/".

 To simplify the development of applications that may not know the absolute path to the current compilation unit, the path
attribute accepts relative URLs [RFC1808]. The user agent converts the relative path to an absolute path and then performs
prefix matching against the path attribute.

 Given the following access control attributes for a compilation unit:

use access domain "wapforum.org" path "/finance"

 The following referring URLs would be allowed to call the external functions specified in this compilation unit:

http://wapforum.org/finance/money.cgi
https://www.wapforum.org/finance/markets.cgi
http://www.wapforum.org/finance/demos/packages.cgi?x=123&y=456

 The following referring URLs would not be allowed to call the external functions:

http://www.test.net/finance
http://www.wapforum.org/internal/foo.wml

 A compilation unit can specify that all external functions have public access (ie, calls to external functions are accepted
from any compilation unit) by using the public access control attribute:

use access public

 By default, access control is enabled.

 6.7.3 Meta-Information

 Pragmas can also be used to specify compilation unit specific meta-information. Meta-information is specified with
property names and values. This specification does not define any properties, nor does it define how user agents must
interpret meta-data. User agents are not required to act on the meta-data.

 Syntax:

 MetaPragma :
 meta MetaSpecifier

 MetaSpecifier :
 MetaName
MetaHttpEquiv
MetaUserAgent

 MetaName :
 name MetaBody

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
38(113)

Version 30-Apr-1998

 MetaHttpEquiv :
 http equiv MetaBody

 MetaUserAgent :
 user agent MetaBody

 MetaBody :
 MetaPropertyName MetaContent MetaSchemeopt

Meta-pragmas have three attributes: property name, content (the value of the property) and optional scheme (specifies a
form or structure that may be used to interpret the property value – the values vary depending on the type of meta-data).
The attribute values are string literals.

 6.7.3.1 Name

 Name meta-pragma is used to specify meta-information intended to be used by the origin servers. The user agent should
ignore any meta-data named with this attribute. Network servers should not emit WMLScript content containing meta-
name pragmas.

use meta name "Created" "18-March-1998"

 6.7.3.2 HTTP Equiv

 HTTP equiv meta-pragma is used to specify meta-information that indicates that the property should be interpreted as an
HTTP header (see [RFC2068]). Meta-data named with this attribute should be converted to a WSP or HTTP response
header if the compilation unit is compiled before it arrives at the user agent.

use meta http equiv "Keywords" "Script,Language"

 6.7.3.3 User Agent

 User agent meta-pragma is used to specify meta-information intended to be used by the user agents. This meta-data must
be delivered to the user agent and must not be removed by any network intermediary.

use meta user agent "Type" "Test"

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
39(113)

Version 30-Apr-1998

 7. Automatic Data Type Conversion Rules
 In some cases, WMLScript operators require specific data types as their operands. WMLScript supports automatic data
type conversions to meet the requirements of these operators. The following sections describe the different conversions in
detail.

 7.1 General Conversion Rules
 WMLScript is a weakly typed language and the variable declarations do not specify a type. However, internally the
language handles the following data types:

• Boolean: represents a boolean value true or false.
• Integer: represents an integer value
• Floating-point: represents a floating-point value
• String: represents a sequence of characters
• Invalid: represents a type with a single value invalid

 A variable at any given time can contain a value of one of these types. WMLScript provides an operator typeof, which can
be used to determine what is the current type of a variable or any expression (no conversions are performed).

 Each WMLScript operator accepts a predefined set of operand types. If the provided operands are not of the right data
type an automatic conversion must take place. The following sections specify the legal automatic conversions between two
data types.

 7.1.1 Conversions to String

 Legal conversions from other data types to string are:

• Integer value must be converted to a string of decimal digits that follows the numeric string grammar rules for
decimal integer literals. See section 8.4 for more information about the numeric string grammar.

• Floating-point value must be converted to an implementation-dependent string representation that follows the
numeric string grammar rules for decimal floating-point literals (see section 8.4 for more information about the
numeric string grammar). The resulting string representation must be equal to the original value (ie .5 can be
represented as "0.5", ".5e0", etc.).

• The boolean value true is converted to string "true" and the value false is converted to string "false".
• Invalid can not be converted to a string value.

 7.1.2 Conversions to Integer

 Legal conversions from other data types to integer are:

• A string can be converted into an integer value only if it contains a decimal representation of an integer number (see
section 8.4 for the numeric string grammar rules for a decimal integer literal).

• Floating-point value cannot be converted to an integer value.
• The boolean value true is converted to integer value 1, false to 0.
• Invalid can not be converted to an integer value.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
40(113)

Version 30-Apr-1998

 7.1.3 Conversions to Floating-Point

 Legal conversions from other data types to floating-point are:

• A string can be converted into a floating-point value only if it contains a valid representation of a floating-point
number (see section 8.4 for the numeric string grammar rules for a decimal floating-point literal).

• An integer value is converted to a corresponding floating-point value.
• The boolean value true is converted to a floating-point value 1.0, false to 0.0.
• Invalid can not be converted to a floating-point value.

 The conversions between a string and a floating-point type must be transitive within the ability of the data types to
accurately represent the value. A conversion could result in loss of precision.

 7.1.4 Conversions to Boolean

 Legal conversions from other data types to boolean are:

• The empty string ("") is converted to false. All other strings are converted to true.
• An integer value 0 is converted to false. All other integer numbers are converted to true.
• A floating-point value 0.0 is converted to false. All other floating-point numbers are converted to true.
• Invalid can not be converted to a boolean value.

7.1.5 Conversions to Invalid

 There are no legal conversion rules for converting any of the other data types to an invalid type. Invalid is either a
result of an operation error or a literal value. In most cases, an operator that has an invalid value as an operand
evaluates to invalid (see the operators in sections 6.3.8, 6.3.9 and 6.3.10 for the exceptions to this rule).

 7.1.6 Summary

 The following table contains a summary of the legal conversions between data types:

 Given \ Used as: Boolean Integer Floating-point String

 Boolean true - 1 1.0 "true"
 Boolean false - 0 0.0 "false"
 Integer 0 false - 0.0 "0"
 Any other
integer

 true - floating-point
value of number

 string representation of a
decimal integer

 Floating-point
0.0

 false Illegal - implementation-
dependent string
representation of a
floating-point value, e.g.
"0.0"

 Any other
floating-point

 true Illegal - implementation-
dependent string
representation of a
floating-point value

 Empty string false Illegal Illegal -

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
41(113)

Version 30-Apr-1998

 Given \ Used as: Boolean Integer Floating-point String

 Non-empty
string

 true integer value of
its string
representation (if
valid – see
section 8.4 for
numeric string
grammar for
decimal integer
literals) or illegal

 floating-point
value of its string
representation (if
valid – see
section 8.4 for
numeric string
grammar for
decimal floating-
point literals) or
illegal

 -

 invalid Illegal Illegal Illegal Illegal

 7.2 Operator Data Type Conversion Rules
 The previous conversion rules specify when a legal conversion is possible between two data types. WMLScript operators
use these rules, the operand data type and values to select the operation to be performed (in case the type is used to specify
the operation) and to perform the data type conversions needed for the selected operation. The rules are specified in the
following way:

• The additional conversion rules are specified in steps. Each step is performed in the given order until the operation
and the data types for its operands are specified and the return value defined.

• If the type of the operand value matches the required type then the value is used as such.
• If the operand value does not match the required type then a conversion from the current data type to the required

one is attempted:
• Legal conversion: Conversion can be done only if the general conversion rules (see section 7.1) specify a legal

conversion from the current operator data type to the required one.
• Illegal conversion: Conversion can not be done if the general conversion rules (see section 7.1) do not specify a

legal conversion from the current type to the required type.
• If a legal conversion rule is specified for the operand (unary) or for all operands then the conversion is performed,

the operation performed on the converted values and the result returned as the value of the operation. If a legal
conversion results in an invalid value then the operation returns an invalid value.

• If no legal conversion is specified for one or more of the operands then no conversion is performed and the next
step in the additional conversion rules is performed.

 The following table contains the operator data type conversion rules based on the given operand data types:

Operand types Additional conversion rules Examples

 Boolean(s)
� If the operand is of type boolean or can be

converted into a boolean value18 then perform a
boolean operation and return its value, otherwise

� return invalid

 true && 3.4 => boolean
 1 && 0 => boolean

 "A" || "" => boolean
 !42 => boolean

 !invalid => invalid
 3 && invalid => invalid

18 Conversion can be done if the general conversion rules (see section 7.1) specify a legal conversion from the current type to the required type.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
42(113)

Version 30-Apr-1998

Operand types Additional conversion rules Examples

 Integer(s)
� If the operand is of type integer or can be

converted into an integer value18 then perform
an integer operation and return its value,
otherwise

� return invalid

 "7" << 2 => integer
 true << 2 => integer
 7.2 >> 3 => invalid

 2.1 div 4 => invalid

 Floating-
point(s)

� If the operand is of type floating-point or can be
converted into a floating-point value18 then
perform a floating-point operation and return its
value, otherwise

� return invalid

 -

 String(s)
� If the operand is of type string or can be

converted into a string value18 then perform a
string operation and return its value, otherwise

� return invalid

 -

 Integer or
floating-point
(unary)

� If the operand is of type integer or can be
converted into an integer value then perform an
integer operation and return its value, otherwise

� if the operand is of type floating-point or can be
converted into a floating-point value18 then
perform a floating-point operation and return its
value, otherwise

� return invalid

 +10 => integer
 -10.3 => float
 -"33" => integer

 +"47.3" => float
 +true => integer 1

 -false => integer 0
 -"ABC" => invalid

 -"9e9999" => invalid

 Integers or
floating-points

� If at least one of the operands is of type floating-
point then convert the remaining operand to a
floating-point value, perform a floating-point
operation and return its value, otherwise

� if the operands are of type integer or can be
converted into integer values18 then perform an
integer operation and return its value, otherwise

� if the operands can be converted into floating-
point values18 then perform a floating-point
operation and return its value, otherwise

� return invalid

 100/10.3 => float
 33*44 => integer

 "10"*3 => integer
 3.4*"4.3" => float
 "10"-"2" => integer

 "2.3"*"3" => float
 3.2*"A" => invalid

 .9*"9e999" => invalid
 invalid*1 => invalid

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
43(113)

Version 30-Apr-1998

Operand types Additional conversion rules Examples

 Integers,
floating-points
or strings

� If at least one of the operands is of type string
then convert the remaining operand to a string
value, perform a string operation and return its
value, otherwise

� if at least one of the operands is of type floating-
point then convert the remaining operand to a
floating-point value, perform a floating-point
operation and return its value, otherwise

� if the operands are of type integer or can be
converted into integer values18 then perform an
integer operation and return its value, otherwise

� return invalid

 12+3 => integer
 32.4+65 => float

 "12"+5.4 => string
 43.2<77 => float

 "Hey"<56 => string
 2.7+"4.2" => string
 9.9+true => float
 3<false => integer

 "A"+invalid => invalid

 Any
� Any type is accepted

 a = 37.3 => float
 b = typeof "s" => string

 7.3 Summary of Operators and Conversions
 The following sections contain a summary on how the conversion rules are applied to WMLScript operators and what are
their possible return value types.

 7.3.1 Single-Typed Operators

 Operators that accept operands of one specific type use the general conversion rules directly. The following list contains all
single type WMLScript operators:

 Operator Operand types Result type19 Operation performed

 ! boolean boolean logical NOT (unary)
 && booleans boolean logical AND

 || booleans boolean logical OR
 ~ integer integer bitwise NOT (unary)

 << integers integer bitwise left shift
 >> integers integer bitwise right shift with sign

 >>> integers integer bitwise right shift with zero fill
 & integers integer bitwise AND
 ̂ integers integer bitwise XOR
 | integers integer bitwise OR

 % integers integer remainder
 div integers integer integer division

 <<=, >>=,
>>>=,

&=, ^=, |=

 first operand: variable
 second operand: integer

 integer assignment with bitwise operation

 %=,
div=

 first operand: variable
 second operand: integer

 integer assignment with numeric operation

19 All operators may have an invalid result type.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
44(113)

Version 30-Apr-1998

 7.3.2 Multi-Typed Operators

 The following sections contain the operators that accept multi-typed operands:

 Operator Operand types Result type20 Operation performed

 ++ integer or floating-point integer/floating-
point

 pre- or post-increment (unary)

 -- integer or floating-point integer/floating-
point

 pre- or post-decrement (unary)

 + integer or floating-point integer/floating-
point

 unary plus

 - integer or floating-point integer/floating-
point

 unary minus (negation)

 * integers or floating-
points

 integer/floating-
point

 multiplication

 / integers or floating-
points

 integer/floating-
point

 division

 - integers or floating-
points

 integer/floating-
point

 subtraction

 + integers, floating-points
or strings

 integer/floating-
point/string

 addition or string concatenation

 <, <= integers, floating-points
or strings

 boolean less than, less than or equal

 >, >= integers, floating-points
or strings

 boolean greater than, greater or equal

 == integers, floating-points
or strings

 boolean equal (identical values)

 != integers, floating-points
or strings

 boolean not equal (different values)

 *=, /=, -= first operand: variable
 second operand: integer

or floating-point

 integer/floating-
point

 assignment with numeric operation

 += first operand: variable
 second operand: integer,
floating-point or string

 integer/floating-
point/string

 assignment with addition or
concatenation

 typeof any integer21 return internal data type (unary)
 isvalid any boolean21 check for validity (unary)

 ? : first operand: boolean
 second operand: any
 third operand: any

 any conditional expression

 = first operand: variable
 second operand: any

 any assignment

 , first operand: any
 second operand: any

 any multiple evaluation

20 All operators (unless otherwise stated) may have an invalid result type.
21 Operator does not generate an invalid result type.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
45(113)

Version 30-Apr-1998

 8. WMLScript Grammar
 The grammars used in this specification are based on [ECMA262]. Since WMLScript is not compliant with ECMAScript,
the standard has been used only as the basis for defining WMLScript language.

 8.1 Context-Free Grammars
 This section describes the context-free grammars used in this specification to define the lexical and syntactic structure of a
WMLScript program.

 8.1.1 General

 A context-free grammar consists of a number of productions. Each production has an abstract symbol called a nonterminal
as its left-hand side and a sequence of one or more nonterminal and terminal symbols as its right-hand side. For each
grammar, the terminal symbols are drawn from a specified alphabet.

 A given context-free grammar specifies a language. It begins with a production consisting of a single distinguished
nonterminal called the goal symbol followed by a (perhaps infinite) set of possible sequences of terminal symbols. They
are the result of repeatedly replacing any nonterminal in the sequence with a right-hand side of a production for which the
nonterminal is the left-hand side.

 8.1.2 Lexical Grammar

 A lexical grammar for WMLScript is given in section 8.2. This grammar has as its terminal symbols the characters of the
Universal Character set of ISO/IEC-10646 ([ISO10646]). It defines a set of productions, starting from the goal symbol
Input that describes how sequences of characters are translated into a sequence of input elements.

 Input elements other than white space and comments form the terminal symbols for the syntactic grammar for WMLScript
and are called WMLScript tokens. These tokens are the reserved words, identifiers, literals and punctuators of the
WMLScript language. Simple white space and single-line comments are simply discarded and do not appear in the stream
of input elements for the syntactic grammar. Likewise, a multi-line comment is simply discarded if it contains no line
terminator; but if a multi-line comment contains one or more line terminators, then it is replaced by a single line
terminator, which becomes part of the stream of input elements for the syntactic grammar.

 Productions of the lexical grammar are distinguished by having two colons "::" as separating punctuation.

 8.1.3 Syntactic Grammar

 The syntactic grammar for WMLScript is given in section 8.3. This grammar has WMLScript tokens defined by the
lexical grammar as its terminal symbols. It defines a set of productions, starting from the goal symbol CompilationUnit,
that describe how sequences of tokens can form syntactically correct WMLScript programs.

 When a stream of Unicode characters is to be parsed as a WMLScript, it is first converted to a stream of input elements by
repeated application of the lexical grammar; this stream of input elements is then parsed by a single application of the
syntax grammar. The program is syntactically in error if the tokens in the stream of input elements cannot be parsed as a
single instance of the goal nonterminal CompilationUnit, with no tokens left over.

 Productions of the syntactic grammar are distinguished by having just one colon ":" as punctuation.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
46(113)

Version 30-Apr-1998

 8.1.4 Numeric String Grammar

 A third grammar is used for translating strings into numeric values. This grammar is similar to the part of the lexical
grammar having to do with numeric literals and has as its terminal symbols the characters of the Unicode character set.
This grammar appears in section 8.4.

 Productions of the numeric string grammar are distinguished by having three colons “:::” as punctuation.

 8.1.5 Grammar Notation

 Terminal symbols of the lexical and string grammars and some of the terminal symbols of the syntactic grammar, are
shown in fixed width font, both in the productions of the grammars and throughout this specification whenever the
text directly refers to such a terminal symbol. These are to appear in a program exactly as written.

 Nonterminal symbols are shown in italic type. The definition of a nonterminal is introduced by the name of the
nonterminal being defined followed by one or more colons. (The number of colons indicates to which grammar the
production belongs.) One or more alternative right-hand sides for the nonterminal then follow on succeeding lines. For
example, the syntactic definition:

 WhileStatement :
 while (Expression) Statement

 states that the nonterminal WhileStatement represents the token while, followed by a left parenthesis token, followed by
an Expression, followed by a right parenthesis token, followed by a Statement. The occurrences of Expression and
Statement are themselves nonterminals. As another example, the syntactic definition:

 ArgumentList :
 AssignmentExpression
ArgumentList , AssignmentExpression

 states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList, followed by a comma,
followed by an AssignmentExpression. This definition of ArgumentList is recursive, that is to say, it is defined in terms of
itself. The result is that an ArgumentList may contain any positive number of arguments, separated by commas, where each
argument expression is an AssignmentExpression. Such recursive definitions of nonterminals are common.

 The subscripted suffix "opt", which may appear after a terminal or nonterminal, indicates an optional symbol. The
alternative containing the optional symbol actually specifies two right-hand sides, one that omits the optional element and
one that includes it. This means that:

 VariableDeclaration :
 Identifier VariableInitializeropt

 is a convenient abbreviation for:

 VariableDeclaration :
 Identifier
Identifier VariableInitializer

 and that:

 IterationStatement :
 for (Expressionopt ; Expressionopt ; Expressionopt) Statement

 is a convenient abbreviation for:

 IterationStatement :
 for (; Expressionopt ; Expressionopt) Statement
for (Expression ; Expressionopt ; Expressionopt) Statement

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
47(113)

Version 30-Apr-1998

 which in turn is an abbreviation for:

 IterationStatement :
 for (; ; Expressionopt) Statement
for (; Expression ; Expressionopt) Statement
for (Expression ; ; Expressionopt) Statement
for (Expression ; Expression ; Expressionopt) Statement

 which in turn is an abbreviation for:

 IterationStatement :
 for (; ;) Statement
for (; ; Expression) Statement
for (; Expression ;) Statement
for (; Expression ; Expression) Statement
for (Expression ; ;) Statement
for (Expression ; ; Expression) Statement
for (Expression ; Expression ;) Statement
for (Expression ; Expression ; Expression) Statement

 therefore, the nonterminal IterationStatement actually has eight alternative right-hand sides.

 Any number of occurrences of LineTerminator may appear between any two consecutive tokens in the stream of input
elements without affecting the syntactic acceptability of the program.

 When the words "one of" follow the colon(s) in a grammar definition, they signify that each of the terminal symbols on the
following line or lines is an alternative definition. For example, the lexical grammar for WMLScript contains the
production:

 ZeroToThree :: one of
 0 1 2 3

 which is merely a convenient abbreviation for:

 ZeroToThree ::
 0

 1

 2

 3

 When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a multicharacter
token, it represents the sequence of characters that would make up such a token.

 The right-hand side of a production may specify that certain expansions are not permitted by using the phrase "but not"
and then indicating the expansions to be excluded. For example, the production:

 Identifier ::
 IdentifierName but not ReservedWord

 means that the nonterminal Identifier may be replaced by any sequence of characters that could replace IdentifierName
provided that the same sequence of characters could not replace ReservedWord.

 Finally, a few nonterminal symbols are described by a descriptive phrase in roman type in cases where it would be
impractical to list all the alternatives:

 SourceCharacter:

 any Unicode character

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
48(113)

Version 30-Apr-1998

 8.1.6 Source Text

 WMLScript source text is represented as a sequence of characters representable using the Universal Character set of
ISO/IEC-10646 ([ISO10646]). Currently, this character set is identical to Unicode 2.0 ([UNICODE]). Within this
document, the terms ISO10646 and Unicode are used interchangeably and will indicate the same document character set.

 SourceCharacter ::
 any Unicode character

 There is no requirement that WMLScript documents be encoded using the full Unicode encoding (e.g. UCS-4). Any
character encoding ("charset") that contains an inclusive subset of the characters in Unicode may be used (e.g. US-ASCII,
ISO-8859-1, etc.).

 Every WMLScript program can be represented using only ASCII characters (which are equivalent to the first 128 Unicode
characters). Non-ASCII Unicode characters may appear only within comments and string literals. In string literals, any
Unicode character may also be expressed as a Unicode escape sequence consisting of six ASCII characters, namely \u
plus four hexadecimal digits. Within a comment, such an escape sequence is effectively ignored as part of the comment.
Within a string literal, the Unicode escape sequence contributes one character to the string value of the literal.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
49(113)

Version 30-Apr-1998

 8.2 WMLScript Lexical Grammar
 The following contains the specification of the lexical grammar for WMLScript:

 SourceCharacter ::
 any Unicode character

 WhiteSpace ::
 <TAB>
<VT>
<FF>
<SP>
<LF>
<CR>

 LineTerminator ::
 <LF>
<CR>
<CR><LF>

 Comment ::
 MultiLineComment
SingleLineComment

 MultiLineComment ::
 /* MultiLineCommentCharsopt */

 MultiLineCommentChars ::
 MultiLineNotAsteriskChar MultiLineCommentCharsopt

* PostAsteriskCommentCharsopt

 PostAsteriskCommentChars ::
 MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentCharsopt

* PostAsteriskCommentCharsopt

 MultiLineNotAsteriskChar ::
 SourceCharacter but not asterisk *

 MultiLineNotForwardSlashOrAsteriskChar ::
 SourceCharacter but not forward-slash / or asterisk *

 SingleLineComment ::
 // SingleLineCommentCharsopt

 SingleLineCommentChars ::
 SingleLineCommentChar SingleLineCommentCharsopt

 SingleLineCommentChar ::
 SourceCharacter but not LineTerminator

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
50(113)

Version 30-Apr-1998

 Token ::
 ReservedWord
Identifier
Punctuator
Literal

 ReservedWord ::
 Keyword
KeywordNotUsedByWMLScript
FutureReservedWord

 Keyword :: one of
 access equiv meta var
 agent extern name while
 break for path url
 continue function public
 div header return
 div= http typeof
 domain if use
 else isvalid user

 KeywordNotUsedByWMLScript :: one of
 delete null
 in this
 lib void
 new with

 FutureReservedWord :: one of
 case default finally super

 catch do import switch

 class enum private throw

 const export sizeof try

 debugger extends struct

 Identifier ::
 IdentifierName but not ReservedWord

 IdentifierName ::
 IdentifierLetter
IdentifierName IdentifierLetter
IdentifierName DecimalDigit

 IdentifierLetter :: one of22

 a b c d e f g h i j k l m n o p q r s t u v w x y z
 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
 _

 DecimalDigit :: one of

 0 1 2 3 4 5 6 7 8 9

 22 Compatibility note: ECMAScript supports the usage of dollar sign ($) in identifier names, too.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
51(113)

Version 30-Apr-1998

 Punctuator :: one of23

 = > < == <= >=
 != , ! ~ ? :
 . && || ++ -- +
 - * / & | ̂
 % << >> >>> += -=
 *= /= &= |= ̂ = %=
 <<= >>= >>>= () {
 } ; #

 Literal ::24

 InvalidLiteral
BooleanLiteral
NumericLiteral
StringLiteral

 InvalidLiteral ::25

 invalid

 BooleanLiteral ::26

 true
false

 NumericLiteral ::
 DecimalIntegerLiteral
HexIntegerLiteral
OctalIntegerLiteral
DecimalFloatLiteral

 DecimalIntegerLiteral ::
 0
NonZeroDigit DecimalDigitsopt

 NonZeroDigit :: one of
 1 2 3 4 5 6 7 8 9

 HexIntegerLiteral ::
 0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

 HexDigit :: one of
 0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

 OctalIntegerLiteral ::
 0 OctalDigit
OctalIntegerLiteral OctalDigit

 23 Compatibility note: ECMAScript supports arrays and square brackets ([]), too.

 24 Compatibility note: ECMAScript supports Null literal, too.
25 Compatibility note: ECMAScript does not support invalid.

 26 Compatibility note: ECMAScript supports both lower and upper case boolean literals.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
52(113)

Version 30-Apr-1998

 OctalDigit :: one of
 0 1 2 3 4 5 6 7

 DecimalFloatLiteral ::
 DecimalIntegerLiteral . DecimalDigitsopt ExponentPartopt

. DecimalDigits ExponentPartopt

DecimalIntegerLiteral ExponentPart

 DecimalDigits ::
 DecimalDigit
DecimalDigits DecimalDigit

 ExponentPart ::
 ExponentIndicator SignedInteger

 ExponentIndicator :: one of
 e E

 SignedInteger ::
 DecimalDigits
+ DecimalDigits
- DecimalDigits

 StringLiteral ::
 " DoubleStringCharactersopt "
’ SingleStringCharactersopt ’

 DoubleStringCharacters ::
 DoubleStringCharacter DoubleStringCharactersopt

 SingleStringCharacters ::
 SingleStringCharacter SingleStringCharactersopt

 DoubleStringCharacter ::
 SourceCharacter but not double-quote "or backslash \ or LineTerminator
EscapeSequence

 SingleStringCharacter ::
 SourceCharacter but not single-quote ’or backslash \ or LineTerminator
EscapeSequence

 EscapeSequence ::
 CharacterEscapeSequence
OctalEscapeSequence
HexEscapeSequence
UnicodeEscapeSequence

 CharacterEscapeSequence ::
 \ SingleEscapeCharacter

 SingleEscapeCharacter :: one of
 ’ " \ / b f n r t

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
53(113)

Version 30-Apr-1998

 HexEscapeSequence ::
 \x HexDigit HexDigit

 OctalEscapeSequence ::
 \ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit OctalDigit

 ZeroToThree :: one of
 0 1 2 3

 UnicodeEscapeSequence ::
 \u HexDigit HexDigit HexDigit HexDigit

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
54(113)

Version 30-Apr-1998

 8.3 WMLScript Syntactic Grammar
 The following contains the specification of the syntactic grammar for WMLScript:

 PrimaryExpression :27

 Identifier
Literal
(Expression)

 CallExpression : 28

 PrimaryExpression
LocalScriptFunctionCall
ExternalScriptFunctionCall
LibraryFunctionCall

 LocalScriptFunctionCall :
 FunctionName Arguments

 ExternalScriptFunctionCall :
 ExternalScriptName # FunctionName Arguments

 LibraryFunctionCall :
 LibraryName . FunctionName Arguments

 FunctionName :
 Identifier

 ExternalScriptName :
 Identifier

 LibraryName :
 Identifier

 Arguments :
 ()
(ArgumentList)

 ArgumentList :
 AssignmentExpression
ArgumentList , AssignmentExpression

 PostfixExpression :
 CallExpression
Identifier ++
Identifier --

 27 Compatibility note: ECMAScript supports objects and this, too.

 28 Compatibility note: ECMAScript support for arrays ([]) and object allocation (new) removed. MemberExpression is used for specifying library
functions, e.g. String.length("abc"), not for accessing members of an object.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
55(113)

Version 30-Apr-1998

 UnaryExpression :29

 PostfixExpression
typeof UnaryExpression
isvalid UnaryExpression
++ Identifier
-- Identifier
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
! UnaryExpression

 MultiplicativeExpression :30

 UnaryExpression
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression div UnaryExpression
MultiplicativeExpression % UnaryExpression

 AdditiveExpression :
 MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

 ShiftExpression :
 AdditiveExpression
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

 RelationalExpression :
 ShiftExpression
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression

 EqualityExpression :
 RelationalExpression
EqualityExpression == RelationalExpression
EqualityExpression != RelationalExpression

 BitwiseANDExpression :
 EqualityExpression
BitwiseANDExpression & EqualityExpression

 BitwiseXORExpression :
 BitwiseANDExpression
BitwiseXORExpression ^ BitwiseANDExpression

 29 Compatibility note: ECMAScript operators delete and void are not supported. parseInt and parseFloat are supported as library functions.
ECMAScipt does not support operator isvalid.

 30 Compatibility note: Integer division (div) is not supported by ECMAScript.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
56(113)

Version 30-Apr-1998

 BitwiseORExpression :
 BitwiseXORExpression
BitwiseORExpression | BitwiseXORExpression

 LogicalANDExpression :
 BitwiseORExpression
LogicalANDExpression && BitwiseORExpression

 LogicalORExpression :
 LogicalANDExpression
LogicalORExpression || LogicalANDExpression

 ConditionalExpression :
 LogicalORExpression
LogicalORExpression ? AssignmentExpression : AssignmentExpression

 AssignmentExpression :
 ConditionalExpression
Identifier AssignmentOperator AssignmentExpression

 AssignmentOperator :: one of
 = *= /= %= += -= <<= >>= >>>= &= ^= |= div=

 Expression :
 AssignmentExpression
Expression , AssignmentExpression

 Statement :31

 Block
VariableStatement
EmptyStatement
ExpressionStatement
IfStatement
IterationStatement
ContinueStatement
BreakStatement
ReturnStatement

 Block :
 { StatementListopt }

 StatementList :
 Statement
StatementList Statement

 VariableStatement :
 var VariableDeclarationList ;

 VariableDeclarationList :
 VariableDeclaration
VariableDeclarationList , VariableDeclaration

 31 Compatibility note: ECMAScript with statement is not supported.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
57(113)

Version 30-Apr-1998

 VariableDeclaration :
 Identifier VariableInitializeropt

 VariableInitializer :
 = ConditionalExpression

 EmptyStatement :
 ;

 ExpressionStatement :
 Expression ;

 IfStatement :32

 if (Expression) Statement else Statement
if (Expression) Statement

 IterationStatement :33

 WhileStatement
ForStatement

 WhileStatement :
 while (Expression) Statement

 ForStatement :
 for (Expressionopt ; Expressionopt ; Expressionopt) Statement
for (var VariableDeclarationList ; Expressionopt ; Expressionopt) Statement

 ContinueStatement :34

 continue ;

 BreakStatement :35

 break ;

 ReturnStatement :
 return Expressionopt ;

 FunctionDeclaration :36

 externopt function Identifier (FormalParameterListopt) Block ;opt

 FormalParameterList :
 Identifier
FormalParameterList , Identifier

 CompilationUnit :
 Pragmasopt FunctionDeclarations

 32 else is always tied to the closest if.

 33 Compatibility note: ECMAScript for in statement is not supported.
34 Continue statement can only be used inside a while or a for statement.
35 Break statement can only be used inside a while or a for statement.

 36 Compatibility note: ECMAScript does not support keyword extern.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
58(113)

Version 30-Apr-1998

 Pragmas :37

 Pragma
Pragmas Pragma

 Pragma :
 use PragmaDeclaration ;

 PragmaDeclaration :
 ExternalCompilationUnitPragma
AccessControlPragma
MetaPragma

 ExternalCompilationUnitPragma :
 url Identifier StringLiteral

 AccessControlPragma :38

 access AccessControlSpecifier

 AccessControlSpecifier :
 public
domain StringLiteral
path StringLiteral
domain StringLiteral path StringLiteral

 MetaPragma :
 meta MetaSpecifier

 MetaSpecifier :
 MetaName
MetaHttpEquiv
MetaUserAgent

 MetaName :
 name MetaBody

 MetaHttpEquiv :
 http equiv MetaBody

 MetaUserAgent :
 user agent MetaBody

 MetaBody :
 MetaPropertyName MetaContent MetaSchemeopt

 MetaPropertyName :
 StringLiteral

 MetaContent :
 StringLiteral

 37 Compatibility note: ECMAScript does not support pragmas.
38 Compilation unit can contain only one access control pragma.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
59(113)

Version 30-Apr-1998

 MetaScheme :
 StringLiteral

 FunctionDeclarations :
 FunctionDeclaration
FunctionDeclarations FunctionDeclaration

 8.4 Numeric String Grammar
 The following contains the specification of the numeric string grammar for WMLScript. This grammar is used for
translating strings into numeric values. This grammar is similar to the part of the lexical grammar having to do with
numeric literals and has as its terminal symbols the characters of the Unicode character set.

 The following grammar can be used to convert strings into the following numeric literal values:

• Decimal Integer Literal: Use the following productions starting from the goal symbol StringDecimalIntegerLiteral.
• Decimal Floating-Point Literal: Use the following productions starting from the goal symbol

StringDecimalFloatingPointLiteral.

StringDecimalIntegerLiteral :::
StrWhiteSpaceopt StrDecimalIntegerLiteral StrWhiteSpaceopt

StringDecimalFloatingPointLiteral :::
StrWhiteSpaceopt StrDecimalIntegerLiteral StrWhiteSpaceopt

StrWhiteSpaceopt StrDecimalFloatingPointLiteral StrWhiteSpaceopt

StrWhiteSpace :::
StrWhiteSpaceChar StrWhiteSpaceopt

StrWhiteSpaceChar :::
any Unicode character with character code less than or equal to 32

StrDecimalIntegerLiteral :::
StrDecimalDigits
+ StrDecimalDigits
- StrDecimalDigits

StrDecimalFloatingPointLiteral :::
StrDecimalDigits . StrDecimalDigitsopt StrExponentPartopt

. StrDecimalDigits StrExponentPartopt

StrDecimalDigits StrExponentPart

StrDecimalDigits :::
StrDecimalDigit
StrDecimalDigits StrDecimalDigit

StrDecimalDigit ::: one of

0 1 2 3 4 5 6 7 8 9

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
60(113)

Version 30-Apr-1998

StrExponentPart :::
StrExponentIndicator StrSignedInteger

StrExponentIndicator ::: one of
e E

StrSignedInteger :::
StrDecimalDigits
+ StrDecimalDigits
- StrDecimalDigits

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
61(113)

Version 30-Apr-1998

9. WMLScript Bytecode Interpreter
 The textual format of WMLScript language must be compiled into a binary format before it can be interpreted by the
WMLScript bytecode interpreter. WMLScript compiler encodes one WMLScript compilation unit into WMLScript
bytecode using the encoding format presented in the chapter 10. A WMLScript compilation unit (see section 8.1.3) is a
unit containing pragmas and any number of WMLScript functions. WMLScript compiler takes one compilation unit as
input and generates the WMLScript bytecode as its output.

 9.1 Interpreter Architecture
 WMLScript interpreter takes WMLScript bytecode as its input and executes encoded functions as they are called. The
following figure contains the main parts related to WMLScript bytecode interpretation:

IP

VariablesCall Stack

Functions

call http://www.host.com/script#myFunc(“Test”,12)

Operand
Stack

State

WMLScript
Bytecode

WMLScript
Libraries

Interpreter
Functions

…
myFunc()
...

www.host.com/script:

Figure 1: General architecture of the WMLScript interpreter

 The WMLScript interpreter can be used to call and execute functions in a compilation unit encoded as WMLScript
bytecode. Each function specifies the number of parameters it accepts and the instructions used to express its behaviour.
Thus, a call to a WMLScript function must specify the function, the function call arguments and the compilation unit in
which the function is declared. Once the execution completes normally, the WMLScript interpreter returns the control and
the return value back to the caller.

 Execution of a WMLScript function means interpreting the instructions residing in the WMLScript bytecode. While a
function is being interpreted, the WMLScript interpreter maintains the following state information:

• IP (Instruction Pointer): This points to an instruction in the bytecode that is being interpreted.
• Variables: Maintenance of function parameters and variables.
• Operand stack: It is used for expression evaluation and passing arguments to called functions and back to the caller.
• Function call stack: WMLScript function can call other functions in the current or separate compilation unit or

make calls to library functions. The function call stack maintains the information about functions and their return
addresses.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
62(113)

Version 30-Apr-1998

 9.2 WMLScript and URLs
 The World Wide Web is a network of information and devices. Three areas of specification ensure widespread
interoperability:

• A unified naming model. Naming is implemented with Uniform Resource Locators (URLs), which provide standard
way to name any network resource. See [RFC1738].

• Standard protocols to transport information (e.g. HTTP).
• Standard content types (e.g. HTML, WMLScript).

 WMLScript assumes the same reference architecture as HTML and the World Wide Web. WMLScript compilation unit is
named using URLs and can be fetched over standard protocols that have HTTP semantics, such as [WSP]. URLs are
defined in [RFC1738]. The character set used to specify URLs is also defined in [RFC1738].

 In WMLScript, URLs are used in the following situations:

• When a user agent wants to make a WMLScript call (see 9.2.4)
• When specifying external compilation units (see 6.7.1)
• When specifying access control information (see 6.7.2)

 9.2.1 URL Schemes

 A WMLScript interpreter must implement the URL schemes specified in [WAE].

 9.2.2 Fragment Anchors

 WMLScript has adopted the HTML de facto standard of naming locations within a resource. A WMLScript fragment
anchor is specified by the document URL, followed by a hash mark (#), followed by a fragment identifier. WMLScript
uses fragment anchors to identify individual WMLScript functions within a WMLScript compilation unit. The syntax of
the fragment anchor is specified in the following section.

 9.2.3 URL Call Syntax

 This section contains the grammar for specifying the syntactic structure of the URL call. This grammar is similar to the
part of the WMLScript lexical and syntactic grammars having to do with function calls and literals and has as its terminal
symbols the characters of the US-ASCII character set.

http://www.host.com/scr#foo(1,-3,’hello’) // OK
http://www.host.com/scr#bar(1,-3+1,’good’) // Error
http://www.host.com/scr#test(foo(1,-3,’hello’)) // Error

 Only the syntax for the fragment anchor (#) is specified (see [RFC1808] for more information about URL syntax).

 URLCallFragmentAnchor :::
 FunctionName()
FunctionName(ArgumentList)

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
63(113)

Version 30-Apr-1998

 FunctionName :::
 FunctionNameLetter
FunctionName FunctionNameLetter
FunctionName DecimalDigit

 FunctionNameLetter ::: one of

 a b c d e f g h i j k l m n o p q r s t u v w x y z
 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
 _

 DecimalDigit ::: one of

 0 1 2 3 4 5 6 7 8 9

 ArgumentList :
 Argument
ArgumentList , Argument

 Argument :::
 WhiteSpaceopt Literal WhiteSpaceopt

 WhiteSpace :::
 any US-ASCII character with character code less than or equal to 32

 Literal :::
 InvalidLiteral
BooleanLiteral
NumericLiteral
StringLiteral

 InvalidLiteral :::
 invalid

 BooleanLiteral :::
 true
false

 NumericLiteral :::
 SignedDecimalIntegerLiteral
SignedDecimalFloatLiteral

 SignedDecimalIntegerLiteral :::
 DecimalIntegerLiteral
+ DecimalIntegerLiteral
- DecimalIntegerLiteral

 DecimalIntegerLiteral :::
 DecimalDigit DecimalDigitsopt

 SignedDecimalFloatLiteral :::
 DecimalFloatLiteral
+ DecimalFloatLiteral
- DecimalFloatLiteral

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
64(113)

Version 30-Apr-1998

 DecimalFloatLiteral :::
 DecimalIntegerLiteral . DecimalDigitsopt ExponentPartopt

. DecimalDigits ExponentPartopt

DecimalIntegerLiteral ExponentPart

 DecimalDigits :::
 DecimalDigit
DecimalDigits DecimalDigit

 ExponentPart :::
 ExponentIndicator SignedInteger

 ExponentIndicator ::: one of
 e E

 SignedInteger :::
 DecimalDigits
+ DecimalDigits
- DecimalDigits

 StringLiteral :::
 " DoubleStringCharactersopt "
’ SingleStringCharactersopt ’

 DoubleStringCharacters :::
 DoubleStringCharacter DoubleStringCharactersopt

 SingleStringCharacters :::
 SingleStringCharacter SingleStringCharactersopt

 DoubleStringCharacter :::
 SourceCharacter but not double-quote "or backslash \
EscapeSequence

 SingleStringCharacter :::
 SourceCharacter but not single-quote ’or backslash \
EscapeSequence

 EscapeSequence :::
 CharacterEscapeSequence
OctalEscapeSequence
HexEscapeSequence
UnicodeEscapeSequence

 CharacterEscapeSequence :::
 \ SingleEscapeCharacter

 SingleEscapeCharacter ::: one of
 ’ " \ / b f n r t

 HexEscapeSequence :::
 \x HexDigit HexDigit

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
65(113)

Version 30-Apr-1998

 OctalEscapeSequence :::
 \ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit OctalDigit

 ZeroToThree ::: one of
 0 1 2 3

 UnicodeEscapeSequence :::
 \u HexDigit HexDigit HexDigit HexDigit

 9.2.4 URL Calls and Parameter Passing

 A user agent can make a call to an external WMLScript function by providing the following information using URLs and
fragment anchors:

• URL of the compilation unit (e.g. http://www.x.com/myScripts.scr)
• Function name and parameters as the fragment anchor (e.g. testFunc(’Test%20argument’,-8))

 The final URL with the fragment is:

http://www.x.com/myScripts.scr#testFunc(’Test%20argument’,-8)

 If the given URL denotes a valid WMLScript compilation unit then:

• Access control checks are performed (see 6.7.2). The call fails if the caller does not have rights to call the
compilation unit.

• The function name specified in the fragment anchor is matched against the external functions in the compilation
unit. The call fails if no match is found.

• The parameter list in the fragment anchor (see 9.2.2) is parsed and the given arguments with their appropriate types
(string literals as string data types, integer literals as integer data types etc.) are passed to the function. The call fails
if the parameter list has an invalid syntax.

 9.2.5 Character Escaping

 URL calls can use both URL escaping [RFC1738] to specify the URL and WMLScript string escaping (see 6.1.5.3) for
any Unicode characters inside string literals. A URL is unescaped by first applying the URL escaping rules and then
WMLScript string literal escaping rules for each string literal passed as a function parameter.

 9.2.6 Relative URLs

 WMLScript has adopted the use of relative URLs, as specified in [RFC1808]. [RFC1808] specifies the method used to
resolve relative URLs in the context of a WMLScript compilation unit. The base URL of a WMLScript compilation unit is
the URL that identifies the compilation unit.

 9.3 Bytecode Semantics
 The following sections describe the general encoding rules that must be used to generate WMLScript bytecode. These
rules specify what the WMLScript compiler can assume from the behaviour of the WMLScript interpreter.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
66(113)

Version 30-Apr-1998

 9.3.1 Passing of Function Arguments

Arguments must be present in the operand stack in the same order as they are presented in a WMLScript function
declaration at the time of a WMLScript or library function call. Thus, the first argument is pushed into the operand stack
first, the second argument is pushed next, etc.

 9.3.2 Automatic Function Return Value

WMLScript function must return an empty string in case the end of the function is encountered without a return statement.
The compiler can rely on the WMLScript interpreter to automatically return an empty string every time the interpreter
reaches the end of the function without encountering a return instruction.

 9.3.3 Initialisation of Variables

The WMLScript compiler should rely on the WMLScript interpreter to initialise all function local variables initially to an
empty string. Thus, the compiler does not have to generate initialization code for variables declared without initialisation.

 9.4 Access Control
 WMLScript provides two mechanisms for controlling the access to the functions in the WMLScript compilation unit:
external keyword and a specific access control pragma. Thus, the WMLScript interpreter must support the following
behaviour:

• External functions: Only functions specified as external can be called from other compilation units (see 6.4).
• Access control: Access to the external functions defined inside a compilation unit is allowed from other compilation

units that match the given access domain and access path definitions (see 6.7.2).

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
67(113)

Version 30-Apr-1998

 10. WMLScript Binary Format
 The following sections contain the specifications for the WMLScript bytecode, a compact binary representation for
compiled WMLScript functions. The format was designed to allow for compact transmission over narrowband channels,
with no loss of functionality or semantic information.

 10.1 Conventions
 The following sections describe the general encoding conventions and data types used to generate WMLScript bytecode.

 10.1.1 Used Data Types

 The following data types are used in the specification of the WMLScript Bytecode:

 Data Type Definition

 bit 1 bit of data
 byte 8 bits of opaque data
 int8 8 bit signed integer (two’s complement encoding)
 u_int8 8 bit unsigned integer
 int16 16 bit signed integer (two’s complement encoding)
 u_int16 16 bit unsigned integer
 mb_u_int16 16 bit unsigned integer, in multi-byte integer format. See 10.1.2 for more

information.
 int32 32 bit signed integer (two’s complement encoding)
 u_int32 32 bit unsigned integer
 mb_u_int32 32 bit unsigned integer, in multi-byte integer format. See 10.1.2 for more

information.
 float32 32 bit signed floating-point value in ANSI/IEEE Std 754-1985 [IEEE754] format.

 Network byte order for multi-byte integer values is "big-endian". In other words, the most significant byte is transmitted on
the network first followed subsequently by the less significant bytes. Network bit ordering for bit fields within a byte is
"big-endian". In other words, bit fields described first are placed in the most significant bits of the byte.

 10.1.2 Multi-byte Integer Format

 This encoding uses a multi-byte representation for integer values. A multi-byte integer consists of a series of octets, where
the most significant bit is the continuation flag and the remaining seven bits are a scalar value. The continuation flag is
used to indicate that an octet is not the end of the multi-byte sequence. A single integer value is encoded into a sequence of
N octets. The first N-1 octets have the continuation flag set to a value of one (1). The final octet in the series has a
continuation flag value of zero.

 The remaining seven bits in each octet are encoded in a big-endian order, e.g., most significant bit first. The octets are
arranged in a big-endian order, e.g. the most significant seven bits are transmitted first. In the situation where the initial
octet has less than seven bits of value, all unused bits must be set to zero (0).

 For example, the integer value 0xA0 would be encoded with the two-byte sequence 0x81 0x20. The integer value
0x60 would be encoded with the one-byte sequence 0x60.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
68(113)

Version 30-Apr-1998

 10.1.3 Character Encoding

 WMLScript character strings use Unicode [UNICODE] character set. WMLScript bytecode supports the following
Unicode character encodings:

• UTF-8 (see [RFC2279])
• UCS-2 (see [ISO10646])
• UCS-4 (see [ISO10646])

 The compiler must select one of these encodings to encode character strings in the WMLScript bytecode.

 WMLScript language constructs, such as function names in WMLScript, are written by using only a subset of Unicode
character set i.e, a subset of US-ASCII characters. Thus, function names in the WMLScript bytecode must use a fixed
UTF-8 encoding.

 10.1.4 Notational Conventions

 WMLScript bytecode is a set of bytes that represent WMLScript functions in a binary format. It contains all the
information needed by the WMLScript interpreter to execute the encoded functions as specified. The bytecode can be
divided into sections and subsections each of which containing a binary representation of a logical WMLScript unit.

 The WMLScript bytecode structure and content is presented using the following table based notation:

 Name Data type and size Comment

 This is a name of a section inside
the bytecode.

 This specifies a data type
and its size reserved for a
section in case it cannot be
divided into smaller
subsections. Subsection
specification is given in a
separate table. Reference to
the table is provided.

 This gives a general overview of the
meaning of this section.

 The name of the next section.
Any number of sections can be
presented in one table.

 ...

 The following conventions apply:

• Sections of bytecode are represented as rows in a table.
• Each section may be divided into subsections and represented in separate tables. In such case a reference to the

subsection table is provided.
• Repetitive sections are denoted by section name followed by three dots (...).

 10.2 WMLScript Bytecode
 The WMLScript encoding contains two major elements: constant literals and the constructs needed to describe the
behaviour of each WMLScript function. Thus, the WMLScript bytecode consists of the following sections:

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
69(113)

Version 30-Apr-1998

 Name Data type and size Comment

 HeaderInfo See 10.3 Contains general information related to the
bytecode.

 ConstantPool See 10.4 Contains the information of all constants specified
as part of the WMLScript compilation unit that
are encoded into bytecode.

 PragmaPool See 10.5 Contains the information related to pragmas
specified as part of the WMLScript compilation
unit that are encoded into bytecode.

 FunctionPool See 10.6 Contains all the information related to the
encoding of functions and their behaviour.

 The following sections define the encoding of these sections and their subsections in detail.

 10.3 Bytecode Header
 The header of the WMLScript bytecode contains the following information:

 Name Data type and size Comment

 VersionNumber byte Version number of the WMLScript bytecode. The
version byte contains the major version minus
one in the upper 4 bits and the minor version in
the lower 4 bits.

 The current version is 1.0. Thus, the version
number must be encoded as 0x00.

 CodeSize mb_u_int32 The size of the rest of the bytecode (not including
the version number and this variable) in bytes

 10.4 Constant Pool
 Constant pool contains all the constants used by the WMLScript functions. Each of the constants has an index number
starting from zero that is defined by its position in the list of constants. The instructions use this index to refer to specific
constants.

 Name Data type and size Comment

 NumberOfConstants mb_u_int16 Specifies how many constants are encoded in this
pool.

 Constants... See 10.4.1 Contains the definitions for each constant in the
constant pool. The number of constants is
specified by NumberOfConstants.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
70(113)

Version 30-Apr-1998

 10.4.1 Constants

 Constants are stored into the bytecode one after each other. Encoding of each constant starts with the definition of its type
(integer, floating-point, string etc.). It is being followed by constant type specific data that represents the actual value of
the constant:

 Name Data type and size Comment

 ConstantType u_int8 The type of the constant.
 ConstantValue See 10.4.1.1, 10.4.1.2 and

10.4.1.3
 Type specific value definition.

 The following encoding for constant types is used:

 Code Type Encoding

 0 8 bit signed integer 10.4.1.1.1
 1 16 bit signed integer 10.4.1.1.2
 2 32 bit signed integer 10.4.1.1.3
 3 32 bit signed floating-point 10.4.1.2
 4 UTF-8 String 10.4.1.3.1
 5 UCS-2 String 10.4.1.3.2
 6 UCS-4 String 10.4.1.3.3
 7 Empty String 10.4.1.3.4

 8-255 Reserved for future use

 10.4.1.1 Integers

 WMLScript bytecode supports 8 bit, 16 bit and 32 bit signed integer constants. The compiler can optimise the WMLScript
bytecode size by selecting the smallest integer constant type that can still hold the integer constant value.

 10.4.1.1.18 Bit Signed Integer

 8 bit signed integer constants are represented in the following format:

 Name Data type and size Comment

 ConstantInteger8 int8 The value of the 8 bit signed integer constant.

 10.4.1.1.216 Bit Signed Integer

 16 bit signed integer constants are represented in the following format:

 Name Data type and size Comment

 ConstantInteger16 int16 The value of the 16 bit signed integer constant.

 10.4.1.1.332 Bit Signed Integer

 32 bit signed integer constants are represented in the following format:

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
71(113)

Version 30-Apr-1998

 Name Data type and size Comment

 ConstantInteger32 int32 The value of the 32 bit signed integer constant.

 10.4.1.2 Floats

 Floating-point constants are represented in 32-bit ANSI/IEEE Std 754-1985 [IEEE754] format:

 Name Data type and size Comment

 ConstantFloat32 float32 The value of the 32 bit floating point constant.

 10.4.1.3 Strings

 WMLScript bytecode supports several ways to encode Unicode string constants39 into the constant pool. The compiler can
optimise the WMLScript bytecode size by selecting the smallest string constant type that can still hold the string constant
value.

 10.4.1.3.1UTF-8 Strings

 Strings that use UTF-8 encoding are encoded into the bytecode by first specifying their length and then the content:

 Name Data type and size Comment

 StringSizeUTF8 mb_u_int32 The size of the following string in bytes (not
containing this variable).

 ConstantStringUTF8 StringSizeUTF8 bytes The value of the Unicode string (non-null
terminated) constant encoded using UTF-8. See
10.1.3 for more information about transfer
encoding of strings.

 10.4.1.3.2UCS-2 Strings

 Strings that use UCS-2 encoding are encoded into the bytecode by first specifying their length and then the content:

 Name Data type and size Comment

 StringSizeUCS2 mb_u_int32 The size of the following string in bytes (not
containing this variable).

 ConstantStringUCS2 StringSizeUCS2 bytes The value of the Unicode string (non-null
terminated) constant encoded using UCS-2. See
10.1.3 for more information about transfer
encoding of strings.

 10.4.1.3.3UCS-4 Strings

 Strings that use UCS-4 encoding are encoded into the bytecode by first specifying their length and then the content:

39 Note that string constants can contain embedded null characters.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
72(113)

Version 30-Apr-1998

 Name Data type and size Comment

 StringSizeUCS4 mb_u_int32 The size of the following string in bytes (not
containing this variable).

 ConstantStringUCS4 StringSizeUCS4 bytes The value of the Unicode string (non-null
terminated) constant encoded using UCS-4. See
10.1.3 for more information about transfer
encoding of strings.

 10.4.1.3.4Empty Strings

 Empty strings do not need any additional encoding for their value.

 10.5 Pragma Pool
 The pragma pool contains the information for pragmas defined in the compiled compilation unit.

 Name Data type and size Comment

 NumberOfPragmas mb_u_int16 The number of pragmas (not containing this
variable).

 Pragmas… See 10.5.1 Contains the definitions for each pragma in the
pragma pool. The number of pragmas is
specified by NumberOfPragmas.

 10.5.1 Pragmas

 Pragmas are stored into the bytecode one after each other. Encoding of each pragma starts with the definition of its type. It
is being followed by pragma type specific data that represents the actual value of the pragma:

 Name Data type and size Comment

 PragmaType u_int8 The type of the pragma following pragma value.
 PragmaValue See 10.5.1.1 and 10.5.1.2 Pragma type specific value definition.

 The following encoding for pragma types is used:

 Code Type Encoding

 0 Access Control Disabled 10.5.1.1.1
 1 Access Domain 10.5.1.1.2
 2 Access Path 10.5.1.1.3
 3 User Agent Property 10.5.1.2.1
 4 User Agent Property and Scheme 10.5.1.2.2

 5-255 Reserved for future use

 10.5.1.1 Access Control Pragmas

 Access control information is encoded into the bytecode using three different pragma types: access control disabled,
access domain and access path. The pragma pool can contain only one entry for each access control pragma type.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
73(113)

Version 30-Apr-1998

 10.5.1.1.1Access Control Disabled

 This pragma specifies that access control for the compilation unit is disabled. If pragma pool contains entries for access
domain and access path, their values are ignored. No additional encoding is needed.

 10.5.1.1.2Access Domain

 This pragma specifies the access domain to be used for the access control.

 Name Data type and size Comment

 AccessDomainIndex mb_u_int16 Constant pool index to a string constant
containing the value of the access domain. The
referred constant type must be between 4 and 7.

 10.5.1.1.3Access Path

 This pragma specifies the access path to be used for access control.

 Name Data type and size Comment

 AccessPathIndex mb_u_int16 Constant pool index to a string constant
containing the value of the access path. The
referred constant type must be between 4 and 7.

 10.5.1.2 Meta-Information Pragmas

 These pragmas contain meta-information that is mean for the WMLScript interpreter. Meta-information contains following
entities: name, content and scheme (optional)

 10.5.1.2.1User Agent Property

 User agent properties are encoded by first specifying their name and then their value as indexes to the constant pool:

 Name Data type and size Comment

 PropertyNameIndex mb_u_int16 Constant pool index to a string constant
(constant types 4 to 7) containing the property
name.

 ContentIndex mb_u_int16 Constant pool index to a string constant
(constant types 4 to 7) containing the property
value.

 10.5.1.2.2User Agent Property and Scheme

 This pragma is encoded by specifying the property name, the value and the additional scheme:

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
74(113)

Version 30-Apr-1998

 Name Data type and size Comment

 PropertyNameIndex mb_u_int16 Constant pool index to a string constant
(constant types 4 to 7) containing the property
name.

 ContentIndex mb_u_int16 Constant pool index to a string constant
(constant types 4 to 7) containing the property
value.

 SchemeIndex mb_u_int16 Constant pool index to a string constant
(constant types 4 to 7) containing the property
schema.

 10.6 Function Pool
 The function pool contains the function definitions. Each of the functions has an index number starting from zero that is
defined by its position in the list of functions. The instructions use this index to refer to specific functions.

 Name Data type and size Comment

 NumberOfFunctions u_int8 The number of functions specified in this
function pool.

 FunctionNameTable See 10.6.1 Function name table contains the names of all
external functions present in the bytecode.

 Functions... See 10.6.2 Contains the bytecode for each function.

 10.6.1 Function Name Table

 The names of the functions that are specified as external (extern) are stored into a function name table. The names must
be presented in the same order as the functions are represented in the function pool. Functions that are not specified as
external are not represented in the function name table. The format of the table is the following:

 Name Data type and size Comment

 NumberOfFunctionNames u_int8 The number of function names stored into the
following table.

 FunctionNames... See 10.6.1.1

 Each external function name represented in the
same order as the functions are stored into the
function pool.

 10.6.1.1 Function Names

 Function name is provided only for functions that are specified as external in WMLScript. Each name is represented in the
following manner:

 Name Data type and size Comment

 FunctionIndex u_int8 The index of the function for which the
following name is provided.

 FunctionNameSize u_int8 The size of the following function name in bytes
(not including this variable).

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
75(113)

Version 30-Apr-1998

 Name Data type and size Comment

 FunctionName FunctionNameSize bytes The characters of the function name encoded by
using UTF-8. See 10.1.3 for more information
about function name encoding.

 10.6.2 Functions

 Each function is defined by its prologue and code array:

 Name Data type and size Comment

 NumberOfArguments u_int8 The number of arguments accepted by the
function.

 NumberOfLocalVariables u_int8 The number of local variables used by the
function (not including arguments).

 FunctionSize mb_u_int32 Size of the following CodeArray (not including
this variable) in bytes.

 CodeArray See 10.6.2.1 Contains the code of the function.

 10.6.2.1 Code Array

 Code array contains all instructions that are needed to implement the behaviour of a WMLScript function. See 11 for more
information about WMLScript instruction set.

 Name Data type and size Comment

 Instructions… See chapter 11 The encoded instructions.

 10.7 Limitations
The following table contains the limitations inherent in the selected bytecode format and instructions:

Maximum size of the bytecode 4294967295 bytes
Maximum number of constants in the constant pool 65535
Maximum number of different constant types 256
Maximum size of a constant string 4294967295 bytes
Maximum size of a constant URL 4294967295 bytes
Maximum length of function name 255
Maximum number of different pragma types 256
Maximum number of pragmas in the pragma pool 65536
Maximum number of functions in the function pool 255
Maximum number of function parameters 255
Maximum number of local variables / function 255
Maximum number of local variables and function parameters 256
Maximum number of libraries 65536
Maximum number of functions / library 256

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
76(113)

Version 30-Apr-1998

11. WMLScript Instruction Set
 The WMLScript instruction set specifies a set of assembly level instructions that must be used to encode all WMLScript
language constructs and operations. These instructions are defined in such a way that they are easy to implement efficiently
on a variety of platforms.

 11.1 Conversion Rules
 The following table contains a summary of the conversion rules specified for the WMLScript interpreter:

Rule – Operand type(s) Conversions

1 – Boolean(s) See the conversion rules for Boolean(s) in section
Operator Data Type Conversion Rules (7.2)

2 – Integer(s) See the conversion rules for Integer(s) in section
Operator Data Type Conversion Rules (7.2)

3 – Floating-point(s) See the conversion rules for Floating-point(s) in
section Operator Data Type Conversion Rules (7.2)

4 – String(s) See the conversion rules for String(s) in section
Operator Data Type Conversion Rules (7.2)

5 – Integer or floating-point (unary) See the conversion rules for Integer or floating-
point (unary) in section Operator Data Type
Conversion Rules (7.2)

6 – Integers or floating-points See the conversion rules for Integers or floating-
points in section Operator Data Type Conversion
Rules (7.2)

7 – Integers, floating-points or strings See the conversion rules for Integers, floating-
points or strings in section Operator Data Type
Conversion Rules (7.2)

8 - Any See the conversion rules for Any in section
Operator Data Type Conversion Rules (7.2)

 11.2 Fatal Errors
 The following table contains a summary of the fatal errors specified for the WMLScript interpreter:

Error code: Fatal Error:

1 (Verification Failed) See section Verification Failed (13.3.1.1)
for details

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
77(113)

Version 30-Apr-1998

Error code: Fatal Error:

2 (Fatal Library Function Error) See section Fatal Library Function Error
(13.3.1.2) for details

3 (Invalid Function Arguments) See section Invalid Function Arguments
(13.3.1.3) for details

4 (External Function Not Found) See section External Function Not Found
(13.3.1.4) for details

5 (Unable to Load Compilation Unit) See section Unable to Load Compilation
Unit (13.3.1.5) for details

6 (Access Violation) See section Access Violation (13.3.1.6) for
details

7 (Stack Underflow) See section Stack Underflow (13.3.1.7) for
details

8 (Programmed Abort) See section Programmed Abort (13.3.2.1)
for details

9 (Stack Overflow) See section Stack Overflow (13.3.3.1) for
details*

10 (Out of Memory) See section Out of Memory (13.3.3.2) for
details*

11 (User Initiated) See section User Initiated (13.3.4.1) for
details*

12 (System Initiated) See section System Initiated (13.3.4.2) for
details*

 * These fatal errors are not related to computation but can be generated as a result of memory exhaustion
or external signals.

 11.3 Optimisations
 WMLScript instruction set has been defined so that it provide at least the minimal set of instructions by which WMLScript
language operations can be presented. Since the WMLScript bytecode is being transferred from the gateway to the client
through a narrowband connection, the selected instructions have been optimised so that the compilers can generate code of
minimal size. In some cases, this has meant that several instructions with different parameters have been introduced to
perform the same operation. The compiler should use the one that generates optimal code.

 Inline parameters have been used to optimally pack information into as few bytes as possible. The following inline
parameter optimisations have been introduced:

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
78(113)

Version 30-Apr-1998

Signature Available
instructions

 Used for

 1XXPPPPP 4 JUMP_FW_S, JUMP_BW_S, TJUMP_FW_S, LOAD_VAR_S
 010XPPPP 2 STORE_VAR_S, LOAD_CONST_S
 011XXPPP 4 CALL_S, CALL_LIB_S, INCR_VAR_S
 00XXXXXX 63 The rest of the instructions

 11.4 Notational Conventions
 The following sections contain the definitions of instructions in the WMLScript instruction set. For each instruction, the
following information is provided:

• Instruction: A symbolic name given to the instruction and its parameters.
• Opcode: The 8-bit encoding of the instruction.
• Parameters: Parameter description specifying their ranges and semantics. Some instructions are optimised and can

contain an implicit parameter as part of the encoding, ie, a set of bits from the 8 bit encoding is reserved for a
parameter value.

• Operation: Description of the operation of the instruction, its parameters and the effects they have on the execution
and the operand stack.

• Operands: Specifies the number of operands required by the instruction and all acceptable operand types.
• Conversion: Specifies the used conversion rule (see section 11.1).
• Result: Specifies the result and its type.
• Operand stack: Specifies the effect on the operand stack. It is described by using notation where the part before the

arrow (=>) represents the stack before the instruction has been executed and the part after the arrow the stack after
the execution.

• Errors: Specifies the possible fatal errors that can occur during the execution of the instruction (see section 11.2).

 All instructions except the control flow instructions continue the execution at the following instruction. Control flow
instructions specify the next instruction explicitly.

 Fatal errors that can be encountered at any time (see section External Exceptions in 13.3.4 and Memory Exhaustion Errors
in 13.3.3) are assumed to be possible with every instruction.

 The result of the instruction can be an invalid value. This is not explicitly stated with each instruction but is assumed to
be the result of the used conversion rule, a load of an invalid or unsupported floating-point constant or a result of an
operation with an invalid operand.

 11.5 Instructions
 The following sections contain the descriptions of each instruction divided into subcategories.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
79(113)

Version 30-Apr-1998

 11.5.1 Control Flow Instructions

 Instruction: JUMP_FW_S

 Opcode: 100iiiii (iiiii is the implicit unsigned offset)

Parameter: Offset is an unsigned 5-bit integer in the range of 0..31.

 Operation: Jumps forward to an offset. Execution proceeds at the given offset from the address of the first byte
following this instruction.

 Operands: -

 Conversion: -

 Result: -

 Operand stack: No change

 Errors: 1 (Verification Failed)

 Instruction: JUMP_FW offset

 Opcode: 00000001

 Parameter: Offset is an unsigned 8-bit integer in the range of 0..255.

 Operation: Jumps forward to an offset. Execution proceeds at the given offset from the address of the first byte
following this instruction.

 Operands: -

 Conversion: -

 Operand stack: No change

 Errors: 1 (Verification Failed)

 Instruction: JUMP_FW_W <offset1,offset2>

 Opcode: 00000010

 Parameter: Offset is an unsigned 16-bit integer <offset1, offset2> in the range of 0..65535.

 Operation: Jumps forward to an offset. Execution proceeds at the given offset from the address of the first byte
following this instruction.

 Operands: -

 Conversion: -

 Result: -

 Operand stack: No change

 Errors: 1 (Verification Failed)

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
80(113)

Version 30-Apr-1998

 Instruction: JUMP_BW_S

 Opcode: 101iiiii (iiiii is the implicit unsigned offset)

 Parameter: Offset is an unsigned 5-bit integer in the range of 0..31.

 Operation: Jumps backward to an offset. Execution proceeds at the given offset from the address of this
instruction.

 Operands: -

 Conversion: -

 Result: -

 Operand stack: No change

 Errors: 1 (Verification Failed)

 Instruction: JUMP_BW offset

 Opcode: 00000011

 Parameter: Offset is an unsigned 8-bit integer in the range of 0..255.

 Operation: Jumps backward to an offset. Execution proceeds at the given offset from the address of this
instruction.

 Operands: -

 Conversion: -

 Result: -

 Operand stack: No change

 Errors: 1 (Verification Failed)

 Instruction: JUMP_BW_W <offset1,offset2>

 Opcode: 00000100

 Parameter: Offset is an unsigned 16-bit integer <offset1, offset2> in the range of 0..65535.

 Operation: Jumps backward to an offset. Execution proceeds at the given offset from the address of this
instruction.

 Operands: -

 Conversion: -

 Result: -

 Operand stack: No change

 Errors: 1 (Verification Failed)

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
81(113)

Version 30-Apr-1998

 Instruction: TJUMP_FW_S

 Opcode: 110iiiii (iiiii is the implicit unsigned offset)

 Parameter: Offset is an unsigned 5-bit integer in the range of 0..31.

 Operation: Pops a value from the operand stack and jumps forward to an offset if the value is either false or
invalid. Execution proceeds at the given offset from the address of the first byte following this
instruction. Otherwise, the execution continues at the next instruction.

 Operand: Boolean

 Conversion: 1 – Boolean(s)

 Result: -

 Operand stack: …, value => …

 Errors: 1 (Verification Failed), 7 (Stack Underflow)

 Instruction: TJUMP_FW offset

 Opcode: 00000101

 Parameter: Offset is an unsigned 8-bit integer in the range of 0..255.

 Operation: Pops a value from the operand stack and jumps forward to an offset if the value is either false or
invalid. Execution proceeds at the given offset from the address of the first byte following this
instruction. Otherwise, the execution continues at the next instruction.

 Operand: Boolean

 Conversion: 1 – Boolean(s)

 Result: -

 Operand stack: …, value => …

 Errors: 1 (Verification Failed), 7 (Stack Underflow)

 Instruction: TJUMP_FW_W <offset1,offset2>

 Opcode: 00000110

 Parameter: Offset is an unsigned 16-bit integer <offset1, offset2> in the range of 0..65535.

 Operation: Pops a value from the operand stack and jumps forward to an offset if the value is either false or
invalid. Execution proceeds at the given offset from the address of the first byte following this
instruction. Otherwise, the execution continues at the next instruction.

 Operand: Boolean

 Conversion: 1 – Boolean(s)

 Result: -

 Operand stack: …, value => …

 Errors: 1 (Verification Failed), 7 (Stack Underflow)

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
82(113)

Version 30-Apr-1998

 Instruction: TJUMP_BW offset

 Opcode: 00000111

 Parameter: Offset is an unsigned 8-bit integer in the range of 0..255.

 Operation: Pops a value from the operand stack and jumps backward to an offset if the value is either false or
invalid. Execution proceeds at the given offset from the address of this instruction. Otherwise,
the execution continues at the next instruction.

 Operand: Boolean

 Conversion: 1 – Boolean(s)

 Result: -

 Operand stack: …, value => …

 Errors: 1 (Verification Failed), 7 (Stack Underflow)

 Instruction: TJUMP_BW_W <offset1,offset2>

 Opcode: 00001000

 Parameter: Offset is an unsigned 16-bit integer <offset1, offset2> in the range of 0..65535.

 Operation: Pops a value from the operand stack and jumps backward to an offset if the value is either false or
invalid. Execution proceeds at the given offset from the address of this instruction. Otherwise,
the execution continues at the next instruction.

 Operand: Boolean

 Conversion: 1 – Boolean(s)

 Result: -

 Operand stack: …, value => …

 Errors: 1 (Verification Failed), 7 (Stack Underflow)

 11.5.2 Function Call Instructions

 Instruction: CALL_S

 Opcode: 01100iii (iii is the implicit findex)

 Parameter: Findex is an unsigned 3-bit integer in the range of 0..7.

 Operation: Calls a local function defined in the same function pool. Execution proceeds from the first
instruction of the function findex.

 Operands: Variable number, any type

 Conversion: -

 Result: Any (function return value)

 Operand stack: …, [arg1, [arg2 …]] => …, ret-value

 Errors: 1 (Verification Failed), 7 (Stack Underflow)

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
83(113)

Version 30-Apr-1998

 Instruction: CALL findex

 Opcode: 00001001

 Parameter: Findex is an unsigned 8-bit integer in the range of 0..255.

 Operation: Calls a local function defined in the same function pool. Execution proceeds from the first
instruction of the function findex.

 Operands: Variable number, any type

 Conversion: -

 Result: Any (function return value)

 Operand stack: …, [arg1, [arg2 …]] => …, ret-value

 Errors: 1 (Verification Failed), 7 (Stack Underflow)

 Instruction: CALL_LIB_S lindex

 Opcode: 01101iii (iii is the implicit findex)

 Parameters: Findex is an unsigned 3-bit integer in the range of 0..7.
Lindex is an unsigned 8-bit integer in the range of 0..255.

 Operation: Calls a library function findex defined in the specified library lindex.

 Operands: Variable number (specified by the called library function), any type

 Conversion: -

 Result: Any (function return value)

 Operand stack: …, [arg1, [arg2 …]] => …, ret-value

 Errors: 1 (Verification Failed), 2 (Fatal Library Function Error),
7 (Stack Underflow), 8 (Programmed Abort)

 Instruction: CALL_LIB findex lindex

 Opcode: 00001010

 Parameters: Findex is an unsigned 8-bit integer in the range of 0..255.
Lindex is an unsigned 8-bit integer in the range of 0..255.

 Operation: Calls a library function findex defined in the specified library lindex.

 Operands: Variable number (specified by the called library function), any type

 Conversion: -

 Result: Any (function return value)

 Operand stack: …, [arg1, [arg2 …]] => …, ret-value

 Errors: 1 (Verification Failed), 2 (Fatal Library Function Error),
7 (Stack Underflow), 8 (Programmed Abort)

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
84(113)

Version 30-Apr-1998

 Instruction: CALL_LIB_W findex <lindex1, lindex2>

 Opcode: 00001011

 Parameters: Findex is an unsigned 8-bit integer in the range of 0..255.
Lindex is an unsigned 16-bit integer <lindex1,lindex2> in the range of 0..65535.

 Operation: Calls a library function findex defined in the specified library lindex.

 Operands: Variable number (specified by the called library function), any type

 Conversion: -

 Result: Any (function return value)

 Operand stack: …, [arg1, [arg2 …]] => …, ret-value

 Errors: 1 (Verification Failed), 2 (Fatal Library Function Error),
7 (Stack Underflow), 8 (Programmed Abort)

 Instruction: CALL_URL urlindex findex args

 Opcode: 00001100

 Parameters: Urlindex is an unsigned 8-bit integer in the range of 0..255 that must point to the constant pool
containing a valid URL. The referred constant type must be between 4 and 7.

Findex is an unsigned 8-bit integer in the range of 0..255 that must point to the constant pool
containing a valid function name. The referred constant type must be 4.

Args is an unsigned 8-bit integer in the range of 0..255 that must contain the number of function
arguments pushed on the operand stack.

 Operation: Calls a function specified by findex defined in the specified URL address urlindex.

 Operands: Variable number (specified by args), any type

 Conversion: -

 Result: Any (function return value)

 Operand stack: …, [arg1, [arg2 …]] => …, ret-value

 Errors: 1 (Verification Failed), 3 (Invalid Function Arguments),
4 (External Function Not Found), 5 (Unable to Load Compilation Unit),
6 (Access Violation), 7 (Stack Underflow)

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
85(113)

Version 30-Apr-1998

 Instruction: CALL_URL_W <urlindex1,urlindex2> <findex1,findex2> args

 Opcode: 00001101

 Parameters: Urlindex is an unsigned 16-bit integer <urlindex1,urlindex2> in the range of 0..65535 that must
point to the constant pool containing a valid URL. The referred constant type must be between 4 and
7.

Findex is an unsigned 16-bit integer <findex1,findex2> in the range of 0..65535 that must point to
the constant pool containing a valid function name. The referred constant type must be 4.

Args is an unsigned integer in the range of 0..255 that must contain the number of function
arguments pushed on the operand stack.

 Operation: Calls a function specified by findex defined in the specified URL address urlindex.

 Operands: Variable number (specified by args), any type

 Conversion: -

 Result: Any (function return value)

 Operand stack: …, [arg1, [arg2 …]] => …, ret-value

 Errors: 1 (Verification Failed), 3 (Invalid Function Arguments),
4 (External Function Not Found), 5 (Unable to Load Compilation Unit),
6 (Access Violation), 7 (Stack Underflow)

 11.5.3 Variable Access and Manipulation

 Instruction: LOAD_VAR_S

 Opcode: 111iiiii (iiiii is the implicit vindex)

 Parameter: Vindex is an unsigned 5-bit integer in the range of 0..31.

 Operation: Pushes the value of the variable vindex on the operand stack.

 Operands: -

 Conversion: -

 Result: Any (content of the variable)

 Operand stack: … => …, value

 Errors: 1 (Verification Failed)

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
86(113)

Version 30-Apr-1998

 Instructions: LOAD_VAR vindex

 Opcode: 00001110

 Parameter: Vindex is an unsigned 8-bit integer in the range of 0..255.

 Operation: Pushes the value of the variable vindex on the operand stack.

 Operands: -

 Conversion: -

 Result: Any (content of the variable)

 Operand stack: … => …, value

 Errors: 1 (Verification Failed)

 Instruction: STORE_VAR_S

 Opcode: 0100iiii (iiii is the implicit vindex)

 Parameter: Vindex is an unsigned 4-bit integer in the range of 0..15.

 Operation: Pops the value from the operand stack and stores it into the variable vindex.

 Operand: Any

 Conversion: 8 - Any

 Result: -

 Operand stack: …, value => …

 Errors: 1 (Verification Failed), 7 (Stack Underflow)

 Instruction: STORE_VAR vindex

 Opcode: 00001111

 Parameter: Vindex is an unsigned 8-bit integer in the range of 0..255.

 Operation: Pops the value from the operand stack and stores it into the variable vindex.

 Operand: Any

 Conversion: 8 - Any

 Result: -

 Operand stack: …, value => …

 Errors: 1 (Verification Failed), 7 (Stack Underflow)

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
87(113)

Version 30-Apr-1998

 Instruction: INCR_VAR_S

 Opcode: 01110iii (iii is the implicit vindex)

 Parameter: Vindex is an unsigned 3-bit integer in the range of 0..7.

 Operation: Increments the value of a variable vindex by one.

 Operands: -

 Conversion: 5 – Integer or floating-point (unary)

 Result: -

 Operand stack: No change

 Errors: 1 (Verification Failed)

 Instruction: INCR_VAR vindex

 Opcode: 00010000

 Parameter: Vindex is an unsigned 8-bit integer in the range of 0..255.

 Operation: Increments the value of a variable vindex by one.

 Operands: -

 Conversion: 5 – Integer or floating-point (unary)

 Result: -

 Operand stack: No change

 Errors: 1 (Verification Failed)

 Instruction: DECR_VAR vindex

 Opcode: 00010001

 Operation: Decrements the value of a variable vindex by one.

 Parameter: Vindex is an unsigned 8-bit integer in the range of 0..255.

 Operands: -

 Conversion: 5 – Integer or floating-point (unary)

 Result: -

 Operand stack: No change

 Errors: 1 (Verification Failed)

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
88(113)

Version 30-Apr-1998

 11.5.4 Access To Constants

 Instruction: LOAD_CONST_S

 Opcode: 0101iiii (iiii is the implicit cindex)

 Parameter: Cindex is an unsigned 4-bit integer in the range of 0..15 that points to the constant pool containing
the actual constant. The referred constant type must be between 0 and 7.

 Operation: Pushes the value of the constant denoted by cindex on the operand stack.

 Operands: -

 Conversion: -

 Result: Any (content of the constant)

 Operand stack: … => …, value

 Errors: 1 (Verification Failed)

 Instruction: LOAD_CONST cindex

 Opcode: 00010010

 Parameter: Cindex is an unsigned 8-bit integer in the range of 0..255 that points to the constant pool containing
the actual constant. The referred constant type must be between 0 and 7.

 Operation: Pushes the value of the constant denoted by cindex on the operand stack.

 Operands: -

 Conversion: -

 Result: Any (content of the constant)

 Operand stack: … => …, value

 Errors: 1 (Verification Failed)

 Instruction: LOAD_CONST_W <cindex1,cindex2>

 Opcode: 00010011

 Parameter: Cindex is an unsigned 16-bit integer <cindex1,cindex2> in the range of 0..65535 that points to the
constant pool containing the actual constant. The referred constant type must be between 0 and 7.

 Operation: Pushes the value of the constant cindex on the operand stack.

 Operands: -

 Conversion: -

 Result: Any (content of the constant)

 Operand stack: … => …, value

 Errors: 1 (Verification Failed)

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
89(113)

Version 30-Apr-1998

 Instruction: CONST_0

 Opcode: 00010100

 Parameters: -

 Operation: Pushes an integer value 0 on the operand stack.

 Operands: -

 Conversion: -

 Result: Integer

 Operand stack: … => …, value_0

 Errors: -

 Instruction: CONST_1

 Opcode: 00010101

 Parameters: -

 Operation: Pushes an integer value 1 on the operand stack.

 Operands: -

 Conversion: -

 Result: Integer

 Operand stack: … => …, value_1

 Errors: -

 Instruction: CONST_M1

 Opcode: 00010110

 Parameters: -

 Operation: Pushes an integer value –1 on the operand stack.

 Operands: -

 Conversion: -

 Result: Integer

 Operand stack: … => …, value_-1

 Errors: -

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
90(113)

Version 30-Apr-1998

 Instruction: CONST_ES

 Opcode: 00010111

 Parameters: -

 Operation: Pushes an empty string on the operand stack.

 Operands: -

 Conversion: -

 Result: String

 Operand stack: … => …, value_""

 Errors: -

 Instruction: CONST_INVALID

 Opcode: 00011000

 Parameters: -

 Operation: Pushes an invalid value on the operand stack.

 Operands: -

 Conversion: -

 Result: Invalid

 Operand stack: … => …, invalid

 Errors: -

 Instruction: CONST_TRUE

 Opcode: 00011001

 Parameters: -

 Operation: Pushes a boolean value true on the operand stack.

 Operands: -

 Conversion: -

 Result: Boolean

 Operand stack: … => …, value_true

 Errors: -

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
91(113)

Version 30-Apr-1998

 Instruction: CONST_FALSE

 Opcode: 00011010

 Parameters: -

 Operation: Pushes a boolean value false on the operand stack.

 Operands: -

 Conversion: -

 Result: Boolean

 Operand stack: … => …, value_false

 Errors: -

 11.5.5 Arithmetic Instructions

 Instruction: INCR

 Opcode: 00011011

 Parameters: -

 Operation: Increments the value on the top of the operand stack by one.

 Operand: Integer or floating-point

 Conversion: 5 – Integer or floating-point (unary)

 Result: Integer or floating-point (incremented by one)

 Operand stack: …, value => …, value+1

 Errors: 7 (Stack Underflow)

 Instruction: DECR

 Opcode: 00011100

 Parameters: -

 Operation: Decrements the value on the top of the operand stack by one.

 Operand: Integer or floating-point

 Conversion: 5 – Integer or floating-point (unary)

 Result: Integer or floating-point (decremented by one)

 Operand stack: …, value => …, value-1

 Errors: 7 (Stack Underflow)

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
92(113)

Version 30-Apr-1998

 Instruction: ADD_ASG vindex

 Opcode: 00011101

 Parameter: Vindex is an unsigned 8-bit integer in the range of 0..255.

 Operation: Pops a value from the operand stack and adds the value to the variable vindex.

 Operands: Integers, floating-points or strings

 Conversion: 7 – Integers, floating-points or strings

 Result: For integers or floating-points: variable containing the result of the addition
For strings: variable containing the result of string concatenation

 Operand stack: …, value => …

 Errors: 1 (Verification Failed), 7 (Stack Underflow)

 Instruction: SUB_ASG vindex

 Opcode: 00011110

 Parameter: Vindex is an unsigned 8-bit integer in the range of 0..255.

 Operation: Pops a value (subtractor) from the operand stack and subtracts the value from the variable vindex.

 Operands: Integers or floating-points

 Conversion: 6 – Integers or floating-points

 Result: Variable containing the result of the subtraction

 Operand stack: …, value => …

 Errors: 1 (Verification Failed), 7 (Stack Underflow)

 Instruction: UMINUS

 Opcode: 00011111

 Parameters: -

 Operation: Pops a value from the operand stack and performs a unary minus operation on it and pushes the
result back on the operand stack.

 Operand: Integer or floating-point

 Conversion: 5 – Integer or floating-point (unary)

 Result: Integer or floating-point (negated)

 Operand stack: …, value => …, -value

 Errors: 7 (Stack Underflow)

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
93(113)

Version 30-Apr-1998

 Instruction: ADD

 Opcode: 00100000

 Parameters: -

 Operation: Pops two values from the operand stack and performs an add operation on them and pushes the
result back on the operand stack.

 Operands: Integers, floating-points or strings

 Conversion: 7 – Integers, floating-points or strings

 Result: For integers or floating-points: the result of the addition
For strings: the result of the concatenation

 Operand stack: …, value1, value2 => …, value1 + value2

 Errors: 7 (Stack Underflow)

 Instruction: SUB

 Opcode: 00100001

 Parameters: -

 Operation: Pops two values from the operand stack and performs a subtract operation on them and pushes the
result back on the operand stack.

 Operands: Integers or floating-points

 Conversion: 6 – Integers or floating-points

 Result: Integer or floating-point

 Operand stack: …, value1, value2 => …, value1 - value2

 Errors: 7 (Stack Underflow)

 Instruction: MUL

 Opcode: 00100010

 Parameters: -

 Operation: Pops two values from the operand stack, performs a multiplication operation on them and pushes the
result back on the operand stack.

 Operands: Integers or floating-points

 Conversion: 6 – Integers or floating-points

 Result: Integer or floating-point

 Operand stack: …, value1, value2 => …, value1 * value2

 Errors: 7 (Stack Underflow)

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
94(113)

Version 30-Apr-1998

 Instruction: DIV

 Opcode: 00100011

 Parameters: -

 Operation: Pops two values from the operand stack, performs a division operation on them and pushes the
result back on the operand stack.

 Operands: Integers or floating-points

 Conversion: 6 – Integers or floating-points

 Result: Integer or floating-point

 Operand stack: …, value1, value2 => …, value1 / value2

 Errors: 7 (Stack Underflow)

 Instruction: IDIV

 Opcode: 00100100

 Parameters: -

 Operation: Pops two values from the operand stack, performs an integer division operation on them and pushes
the result back on the operand stack.

 Operands: Integers

 Conversion: 2 – Integer(s)

 Result: Integer

 Operand stack: …, value1, value2 => …, value1 IDIV value2

 Errors: 7 (Stack Underflow)

 Instruction: REM

 Opcode: 00100101

 Parameters: -

 Operation: Pops two values from the operand stack, performs a reminder operation on them (the sign of the
result equals the sign of the dividend) and pushes the result back on the operand stack.

 Operands: Integers

 Conversion: 6 – Integers or floating-points

 Result: Integer

 Operand stack: …, value1, value2 => …, value1 % value2

 Errors: 7 (Stack Underflow)

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
95(113)

Version 30-Apr-1998

 11.5.6 Bitwise Instructions

 Instruction: B_AND

 Opcode: 00100110

 Parameters: -

 Operation: Pops two values from the operand stack and performs a bitwise and operation on them and pushes
the result back on the operand stack.

 Operands: Integers

 Conversion: 2 – Integer(s)

 Result: Integer

 Operand stack: …, value1, value2 => …, value1 & value2

 Errors: 7 (Stack Underflow)

 Instruction: B_OR

 Opcode: 00100111

 Parameters: -

 Operation: Pops two values from the operand stack and performs a bitwise or operation on them and pushes the
result back on the operand stack.

 Operands: Integers

 Conversion: 2 – Integer(s)

 Result: Integer

 Operand stack: …, value1, value2 => …, value1 | value2

 Errors: 7 (Stack Underflow)

 Instruction: B_XOR

 Opcode: 00101000

 Parameters: -

 Operation: Pops two values from the operand stack, performs a bitwise xor operation on them and pushes the
result back on the operand stack.

 Operands: Integers

 Conversion: 2 – Integer(s)

 Result: Integer

 Operand stack: …, value1, value2 => …, value1 ^ value2

 Errors: 7 (Stack Underflow)

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
96(113)

Version 30-Apr-1998

 Instruction: B_NOT

 Opcode: 00101001

 Parameters: -

 Operation: Pops a value from the operand stack and performs a bitwise complement operation on it and pushes
the result back on the operand stack.

 Operands: Integer

 Conversion: 2 – Integer(s)

 Result: Integer

 Operand stack: …, value => …, ~value

 Errors: 7 (Stack Underflow)

 Instruction: B_LSHIFT

 Opcode: 00101010

 Parameters: -

 Operation: Pops two values from the operand stack, performs a bitwise left-shift operation on them and pushes
the result back on the operand stack.

 Operands: Integers

 Conversion: 2 – Integer(s)

 Result: Integer

 Operand stack: …, value, amount => …, value << amount

 Errors: 7 (Stack Underflow)

 Instruction: B_RSSHIFT

 Opcode: 00101011

 Parameters: -

 Operation: Pops two values from the operand stack, performs a bitwise signed right-shift operation on them and
pushes the result back on the operand stack.

 Operands: Integers

 Conversion: 2 – Integer(s)

 Result: Integer

 Operand stack: …, value, amount => …, value >> amount

 Errors: 7 (Stack Underflow)

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
97(113)

Version 30-Apr-1998

 Instruction: B_RSZSHIFT

 Opcode: 00101100

 Parameters: -

 Operation: Pops two values from the operand stack and performs a bitwise right-shift with zero operation on
them and pushes the result back on the operand stack.

 Operands: Integers

 Conversion: 2 – Integer(s)

 Result: Integer

 Operand stack: …, value, amount => …, value >>> amount

 Errors: 7 (Stack Underflow)

 11.5.7 Comparison Instructions

 Instruction: EQ

 Opcode: 00101101

 Parameters: -

 Operation: Pops two values from the operand stack, performs a logical equality operation on them and pushes
the result back on the operand stack.

 Operands: Integers, floating-points or strings

 Conversion: 7 – Integers, floating-points or strings

 Result: Boolean

 Operand stack: …, value1, value2 => …, value1 EQ value2

 Errors: 7 (Stack Underflow)

 Instruction: LE

 Opcode: 00101110

 Parameters: -

 Operation: Pops two values from the operand stack, performs a logical larger-or-equal operation on them and
pushes the result back on the operand stack.

 Operands: Integers, floating-points or strings

 Conversion: 7 – Integers, floating-points or strings

 Result: Boolean

 Operand stack: …, value1, value2 => …, value1 LE value2

 Errors: 7 (Stack Underflow)

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
98(113)

Version 30-Apr-1998

 Instruction: LT

 Opcode: 00101111

 Parameters: -

 Operation: Pops two values from the operand stack, performs a logical larger-than operation on them and
pushes the result back on the operand stack.

 Operands: Integers, floating-points or strings

 Conversion: 7 – Integers, floating-points or strings

 Result: Boolean

 Operand stack: …, value1, value2 => …, value1 LT value2

 Errors: 7 (Stack Underflow)

 Instruction: GE

 Opcode: 00110000

 Parameters: -

 Operation: Pops two values from the operand stack, performs a logical greater-or-equal operation on them and
pushes the result back on the operand stack.

 Operands: Integers, floating-points or strings

 Conversion: 7 – Integers, floating-points or strings

 Result: Boolean

 Operand stack: …, value1, value2 => …, value1 GE value2

 Errors: 7 (Stack Underflow)

 Instruction: GT

 Opcode: 00110001

 Parameters: -

 Operation: Pops two values from the operand stack, performs a greater-than operation on them and pushes the
result back on the operand stack.

 Operands: Integers, floating-points or strings

 Conversion: 7 – Integers, floating-points or strings

 Result: Boolean

 Operand stack: …, value1, value2 => …, value1 GT value2

 Errors: 7 (Stack Underflow)

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
99(113)

Version 30-Apr-1998

 Instruction: NE

 Opcode: 00110010

 Parameters: -

 Operation: Pops two values from the operand stack, performs a logical not-equal operation on them and pushes
the result back on the operand stack.

 Operands: Integers, floating-points or strings

 Conversion: 7 – Integers, floating-points or strings

 Result: Boolean

 Operand stack: …, value1, value2 => …, value1 NE value2

 Errors: 7 (Stack Underflow)

 11.5.8 Logical Instructions

 Instruction: NOT

 Opcode: 00110011

 Parameters: -

 Operation: Pops a value from the operand stack and performs a logical complement operation on it and pushes
the result back on the operand stack.

 Operands: Boolean

 Conversion: 1 – Boolean(s)

 Result: Boolean

 Operand stack: …, value => …, !value

 Errors: 7 (Stack Underflow)

 Instruction: SCAND

 Opcode: 00110100

 Parameters: -

 Operation: Pops a value from the operand stack and converts it to a boolean value. If the converted value is
false or invalid then the converted value itself is pushed on the operand stack and the boolean
value false is pushed on the operand stack. If the converted value is true then the converted
value itself is pushed on the operand stack.

 Operands: Any

 Conversion: 1 – Boolean(s)

 Result: Boolean

 Operand stack: …, value => …, false, false (in case the value is false)
…, value => …, true (in case the value is true)
…, value => …, invalid, false (in case the value is invalid)

 Errors: 7 (Stack Underflow)

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
100(113)

Version 30-Apr-1998

 Instruction: SCOR

 Opcode: 00110101

 Parameters: -

 Operation: Pops a value from the operand stack and converts it to a boolean value. If the converted value is
false then the boolean value true is pushed on the operand stack. If the converted value is true
or invalid then the converted value itself is pushed on the operand stack and the boolean value
false is pushed on the operand stack.

 Operands: Any

 Conversion: 1 – Boolean(s)

 Result: Boolean

 Operand stack: …, value => …, true (in case the value is false)
…, value => …, true, false (in case the value is true)
…, value => …, invalid, false (in case the value is invalid)

 Errors: 7 (Stack Underflow)

 Instruction: TOBOOL

 Opcode: 00110110

 Parameters: -

 Operation: Pops a value from the operand stack and converts the value to a boolean value and pushes the
converted value on the operand stack. If the popped value is invalid then an invalid value is
pushed back on the operand stack.

 Operands: Any

 Conversion: 1 – Boolean(s)

 Result: Boolean

 Operand stack: …, value => …, tobool

 Errors: 7 (Stack Underflow)

 11.5.9 Stack Instructions

 Instruction: POP

 Opcode: 00110111

 Parameters: -

 Operation: Pops a value from the operand stack.

 Operands: Any

 Conversion: -

 Result: -

 Operand stack: …, value => …

 Errors: 7 (Stack Underflow)

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
101(113)

Version 30-Apr-1998

 11.5.10 Access to Operand Type

 Instruction: TYPEOF

 Opcode: 00111000

 Parameters: -

 Operation: Pops a value from the operand stack and checks its type. Pushes the result as an integer on the
operand stack. The possible results are: 0 = Integer, 1 = Floating-point, 2 = String, 3 = Boolean, 4 =
Invalid

 Operands: Any

 Conversion: -

 Result: Integer

 Operand stack: …, value => …, typeof?

 Errors: 7 (Stack Underflow)

 Instruction: ISVALID

 Opcode: 00111001

 Parameters: -

 Operation: Pops a value from the operand stack and checks its type. If the type is invalid a boolean value
false is pushed on the operand stack, otherwise a boolean value true is pushed on the operand
stack.

 Operands: Any

 Conversion: -

 Result: Boolean

 Operand stack: …, value => …, valid?

 Errors: 7 (Stack Underflow)

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
102(113)

Version 30-Apr-1998

 11.5.11 Function Return Instructions

 Instruction: RETURN

 Opcode: 00111010

 Parameters: -

 Operation: Pops a return value from the operand stack and returns it to the caller. Any other values on the
operand stack are discarded. The execution continues at the next instruction following the function
call of the calling function.

 Operands: Any

 Conversion: -

 Result: -

 Operand stack: …, ret-value => …

 Errors: 7 (Stack Underflow)

 Instruction: RETURN_ES

 Opcode: 00111011

 Parameters: -

 Operation: Returns an empty string to the caller. Any other values on the operand stack are discarded. The
execution continues at the next instruction following the function call of the calling function.

 Operands: -

 Conversion: -

 Result: -

 Operand stack: No change

 Errors: -

 11.5.12 Miscellaneous Instructions

 Instruction: DEBUG

 Opcode: 00111100

 Parameters: -

 Operation: No operation. Reserved for debugging and profiling purposes.

 Operands: -

 Conversion: -

 Result: -

 Operand stack: No change

 Errors: -

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
103(113)

Version 30-Apr-1998

 12. Bytecode Verification
 Bytecode verification takes place before or while the bytecode is used for execution. The purpose of the verification is to
make sure that the content follows the WMLScript bytecode specification. In case of verification failure, the failed
bytecode should not be used for execution or the execution must be aborted and failure signalled to the caller of the
WMLScript interpreter.

 The following checks are to be executed in the WMLScript Interpreter either before the execution is started or during the
execution of WMLScript bytecode.

 12.1 Integrity Check
The following list contains checks that must be used to verify the integrity of the WMLScript bytecode before it is
executed:

• Check that the version number is correct: The bytecode version number must be compared with the bytecode
version number supported by the WMLScript interpreter. The major version numbers must match. The minor
version number of the bytecode must be less than or equal to the minor version number supported by the
WMLScript interpreter.

• Check that the size of the bytecode is correct: The size specified in the bytecode must match exactly the byte size of
the content.

• Check the constant pool:
• The number of constants is correct: The number of constants specified in the constant pool must match the

number of constants stored into the constant pool.
• The types of constants are valid: The numbers used to specify the constant types in the constant pool must

match the supported constant types. Reserved constant types (8-255) result in a verification failure.
• The sizes of constants are valid: Each constant must allocate only the correct number of bytes specified by the

WMLScript bytecode specification (fixed size constants such as integers) or the size parameter provided as part
of the constant entity (constants of varying size such as strings).

• Check the pragma pool:
• The number of pragmas is correct: The number of pragmas specified in the pragma pool must match the

number of pragmas stored into the constant pool.
• The types of pragmas are valid: The numbers used to specify the pragma types in the pragma pool must match

the supported pragma types. Reserved pragma types (5-255) result in a verification failure.
• The constant pool indexes are valid:

• The access control domain and path must point to string constants.
• The constant pool indexes used in meta-information pragmas must point to string constants.

• Check the function pool:
• The number of functions is correct: The number of functions specified in the function pool must match the

number of functions stored into the function pool.
• The function name table is correct:

• The number of function names is correct: The number of function names specified in the function name
table must match the number of function names stored into the function name table.

• The function name indexes are correct: The indexes must point to existing functions in the function pool.
• The function names contain only valid function name characters: Function names must follow the

WMLScript function name syntax.
• The function prologue is correct:

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
104(113)

Version 30-Apr-1998

• The number of arguments and local variables is correct: The sum of the number of arguments and local
variables must be less or equal to 256.

• The size of the function is correct: The size specified in the function prologue must match exactly the byte
size of the function.

 12.2 Runtime Validity Checks
The following list contains the checks that have to be done during the execution to verify that the used instructions are
valid and they use valid parameter values:

• Check that the bytecode contains only valid instructions: Only instructions that are defined in chapter 11 are valid.
• Check that local variable references are valid: The references must be within the boundaries specified by the

number of function local variables in the function prologue.
• Check that constant references are valid:

• The references must be within the boundaries specified by the number of constants in the constant pool.
• The references must point to the valid constant types specified by each instruction.
• In case of URL references, the referred constant strings must contain a valid URL (see [RFC1808]).
• In case of Function Name references, the referred constant strings must contain a valid WMLScript function

name.
• Check that the standard library indexes and library function indexes are valid: The indexes must be within the

boundaries specified by the WMLScript Standard Libraries specification [WMLSLibs].
• Check that local function call indexes are valid: The function indexes must match with the number of functions

specified in the function pool.
• Check that the jumps are within function boundaries: All jumps must have a target inside the function in which they

are specified.
• Check that the targets of jumps are valid: The target of all jumps must be the beginning of an instruction.
• Check that the ends of the functions are valid: Functions must not end in the middle of an instruction.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
105(113)

Version 30-Apr-1998

 13. Run-time Error Detection and Handling
 Since WMLScript functions are used to implement services for users that expect the terminals (in particular mobile
phones) to work properly in all situations, error handling is of utmost importance. This means that while the language does
not provide, for example, an exception mechanism, it should provide tools to either prevent errors from happening or tools
to notice them and take appropriate actions. Aborting a program execution should be the last resort used only in cases
where nothing else is possible.

 The following section lists errors that can happen when downloading bytecode and executing it. It does not contain
programming errors (such as infinite loop etc.). For these cases a user controlled abortion mechanism is needed.

 13.1 Error Detection
 The goal of error detection is to give tools for the programmer to detect errors (if possible) that would lead to erroneous
behaviour. Since WMLScript is a weakly typed language, special functionality has been provided to detect errors that are
caused by invalid data types :

• Check that the given variable contains the right value: WMLScript supports type validation library [WMLSLibs]
functions such as Lang.isInt(), Lang.isFloat(), Lang.parseInt() and Lang.parseFloat().

• Check that the given variable contains a value that is of right type: WMLScript supports the operators typeof and
isvalid that can be used for this purpose.

 13.2 Error Handling
 Error handling takes place after an error has already happened. This is the case when the error could not be prevented by
error detection (memory limits, external signals etc.) or it would have been too difficult to do so (overflow, underflow
etc.). These cases can be divided into two classes:

• Fatal errors: These are errors that cause the program to abort. Since WMLScript functions are always called from
some other user agents, program abortion should always be signalled to the calling user agent. It is then its
responsibility to take the appropriate actions to signal the user of errors.

• Non-fatal errors: These are errors that can be signalled back to the program as special return values and the
program can decide on the appropriate action.

 The following error descriptions are divided into sections based on their fatality.

 13.3 Fatal Errors

 13.3.1 Bytecode Errors

 These errors are related to the bytecode and the instructions being executed by the WMLScript Bytecode Interpreter. They
are indications of erroneous constant pool elements, invalid instructions, invalid arguments to instructions or instructions
that cannot be completed.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
106(113)

Version 30-Apr-1998

 13.3.1.1 Verification Failed

 Description: Reports that the specified bytecode for the called compilation unit did not pass the
verification (see chapter 12 for more information about bytecode verification).

 Generated: At any time when a program attempts to call an external function.
 Example: var a = 3*OtherScript#doThis(param);
 Severity: Fatal.
 Predictable: Is detected during the bytecode verification.
 Solution: Abort program and signal an error to the caller of the WMLScript interpreter.

 13.3.1.2 Fatal Library Function Error

 Description: Reports that a call to a library function resulted in a fatal error.
 Generated: At any time when a call to a library function is used (CALL_LIB). Typically, this is

an unexpected error in the library function implementation.
 Example: var a = String.format(param);
 Severity: Fatal.
 Predictable: No.
 Solution: Abort program and signal an error to the caller of the WMLScript interpreter.

 13.3.1.3 Invalid Function Arguments

 Description: Reports that the number of arguments specified for a function call do not match
with the number of arguments specified in the called function.

 Generated: At any time a call to an external function is used (CALL_URL).
 Example: Compiler generates an invalid parameter to an instruction or the number of

parameters in the called function has changed.
 Severity: Fatal.
 Predictable: No.
 Solution: Abort program and signal an error to the caller of the WMLScript interpreter.

 13.3.1.4 External Function Not Found

 Description: Reports that a call to an external function could not be found from the specified
compilation unit.

 Generated: At any time, when a program attempts to call an external function (CALL_URL).
 Example: var a = 3*OtherScript#doThis(param);
 Severity: Fatal.
 Predictable: No.
 Solution: Abort program and signal an error to the caller of the WMLScript interpreter.

 13.3.1.5 Unable to Load Compilation Unit

 Description: Reports that the specified compilation unit could not be loaded due to
unrecoverable errors in accessing the compilation unit in the network server or the
specified compilation unit does not exist in the network server.

 Generated: At any time, when a program attempts to call an external function (CALL_URL).
 Example: var a = 3*OtherScript#doThis(param);
 Severity: Fatal.
 Predictable: No.
 Solution: Abort program and signal an error to the caller of the WMLScript interpreter.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
107(113)

Version 30-Apr-1998

 13.3.1.6 Access Violation

 Description: Reports an access violation. The called external function resides in a protected
compilation unit.

 Generated: At any time when a program attempts to call an external function (CALL_URL).
 Example: var a = 3*OtherScript#doThis(param);
 Severity: Fatal.
 Predictable: No.
 Solution: Abort program and signal an error to the caller of the WMLScript interpreter.

 13.3.1.7 Stack Underflow

 Description: Indicates a stack underflow because of a program error (compiler generated bad
code).

 Generated: At any time when a program attempts to pop an empty stack.
 Example: Only generated if compiler generates bad code.
 Severity: Fatal.
 Predictable: No.
 Solution: Abort program and signal an error to the caller of the WMLScript interpreter.

 13.3.2 Program Specified Abortion

 This error is generated when a WMLScript function calls the library function Lang.abort() (see [WMLSLibs]) to abort the
execution.

 13.3.2.1 Programmed Abort

 Description: Reports that the execution of the bytecode was aborted by a call to Lang.abort()
function.

 Generated: At any time when a program makes a cal to Lang.abort() function..
 Example: Lang.abort("Unrecoverable error");
 Severity: Fatal.
 Predictable: No.
 Solution: Abort program and signal an error to the caller of the WMLScript interpreter.

 13.3.3 Memory Exhaustion Errors

 These errors are related to the dynamic behaviour of the WMLScript interpreter (see section 9.1 for more information) and
its memory usage.

 13.3.3.1 Stack Overflow

 Description: Indicates a stack overflow.
 Generated: At any time when a program recourses too deep or attempts to push too many

variables onto the operand stack.
 Example: function f(x) { f(x+1); };

 Severity: Fatal.
 Predictable: No.
 Solution: Abort program and signal an error to the caller of the WMLScript interpreter.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
108(113)

Version 30-Apr-1998

 13.3.3.2 Out of Memory

 Description: Indicates that no more memory resources are available to the interpreter.
 Generated: At any time when the operating system fails to allocate more space for the

interpreter.
 Example: function f(x) {

 x=x+”abcdefghijklmnopqrstuvzyxy”;
 f(x);
};

 Severity: Fatal.
 Predictable: No.
 Solution: Abort program and signal an error to the caller of the WMLScript interpreter.

 13.3.4 External Exceptions

 The following exceptions are initiated outside of the WMLScript Bytecode Interpreter.

 13.3.4.1 User Initiated

 Description: Indicates that the user wants to abort the execution of the program (reset button
etc.)

 Generated: At any time.
 Example: User presses reset button while an application is running.
 Severity: Fatal.
 Predictable: No.
 Solution: Abort program and signal an error to the caller of the WMLScript interpreter.

 13.3.4.2 System Initiated

 Description: Indicates that an external fatal exception occurred while a program is running and it
must be aborted. Exceptions can be originated from a low battery, power off, etc.

 Generated: At any time.
 Example: The system is automatically switching off due to a low battery.
 Severity: Fatal.
 Predictable: No.
 Solution: Abort program and signal an error to the caller of the WMLScript interpreter.

 13.4 Non-Fatal Errors

 13.4.1 Computational Errors

 These errors are related to arithmetic operations supported by the WMLScript.

 13.4.1.1 Divide by Zero

 Description: Indicates a division by zero.
 Generated: At any time when a program attempts to divide by 0 (integer or floating-point

division or remainder).

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
109(113)

Version 30-Apr-1998

 Example: var a = 10;
var b = 0;
var x = a / b;
 var y = a div b;
 var z = a % b;
 a /= b;

 Severity: Non-fatal.
 Predictable: Yes.
 Solution: The result is an invalid value.

 13.4.1.2 Integer Overflow

 Description: Reports an arithmetic integer overflow.
 Generated: At any time when a program attempts to execute an integer operation.
 Example: var a = Lang.maxInt();

var b = Lang.maxInt();
var c = a + b;

 Severity: Non-fatal.
 Predictable: Yes (but difficult in certain cases).
 Solution: The result is an invalid value.

 13.4.1.3 Floating-Point Overflow

 Description: Reports an arithmetic floating-point overflow.
 Generated: At any time when a program attempts to execute a floating-point operation.
 Example: var a = 1.6e308;

var b = 1.6e308;
var c = a * b;

 Severity: Non-fatal.
 Predictable: Yes (but difficult in certain cases).
 Solution: The result is an invalid value.

 13.4.1.4 Floating-Point Underflow

 Description: Reports an arithmetic underflow.
 Generated: At any time when the result of a floating-point operation is smaller than what can be

represented.
 Example: var a = Float.precision();

var b = Float.precision();
var c = a * b;

 Severity: Non-fatal.
 Predictable: Yes (but difficult in certain cases).
 Solution: The result is a floating-point value 0.0.

 13.4.2 Constant Reference Errors

 These errors are related to run-time references to constants in the constant pool.

 13.4.2.1 Not a Number Floating-Point Constant

 Description: Reports a reference to a floating-point literal in the constant pool that is Not a
Number [IEEE754].

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
110(113)

Version 30-Apr-1998

 Generated: At any time when a program attempts to access a floating-point literal and the
compiler has generated a Not a Number as a floating-point constant.

 Example: A reference to a floating-point literal.
 Severity: Non-fatal.
 Predictable: Yes.
 Solution: The result is an invalid value.

 13.4.2.2 Infinite Floating-Point Constant

 Description: Reports a reference to a floating-point literal in the constant pool that is either
positive or negative infinity [IEEE754].

 Generated: At any time when a program attempts to access a floating-point literal and the
compiler has generated a floating-point constant with a value of positive or negative
infinity.

 Example: A reference to a floating-point literal.
 Severity: Non-fatal.
 Predictable: Yes.
 Solution: The result is an invalid value.

 13.4.2.3 Illegal Floating-Point Reference

 Description: Reports an erroneous reference to a floating-point value in the constant pool.
 Generated: At any time when a program attempts to use floating-point values and the

environments supports only integer values.
 Example: var a = 3.14;
 Severity: Non-fatal.
 Predictable: Can be detected during the run-time.
 Solution: The result is an invalid value.

 13.4.3 Conversion Errors

 These errors are related to automatic conversions supported by the WMLScript.

 13.4.3.1 Integer Too Large

 Description: Indicates a conversion to an integer value where the integer value is too large
(positive/negative).

 Generated: At any time when an application attempts to make an automatic conversion to an
integer value.

 Example: var a = -"99";
 Severity: Non-fatal.
 Predictable: No.
 Solution: The result is an invalid value.

 13.4.3.2 Floating-Point Too Large

 Description: Indicates a conversion to a floating-point value where the floating-point value is too
large (positive/negative).

 Generated: At any time when an application attempts to make an automatic conversion to a
floating-point value.

 Example: var a = -"9999999.9999999999e99999";
 Severity: Non-fatal.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
111(113)

Version 30-Apr-1998

 Predictable: No.
 Solution: The result is an invalid value.

 13.4.3.3 Floating-Point Too Small

 Description: Indicates a conversion to a floating-point value where the floating-point value is too
small (positive/negative).

 Generated: At any time when an application attempts to make an automatic conversion to a
floating-point value.

 Example: var a = -"0.01e-99";
 Severity: Non-fatal.
 Predictable: No.
 Solution: The result is a floating-point value 0.0.

 13.5 Library Calls and Errors
 Since WMLScript supports the usage of libraries, there is a possibility that errors take place inside the library functions.
Design and the behaviour of the library functions are not part of the WMLScript language specification. However,
following guidelines should be followed when designing libraries:

• Provide the library users mechanisms by which errors can be detected before they happen.
• Use the same error handling mechanisms as WMLScript operators in cases where error should be reported back to

the caller.
• Minimise the possibility of fatal errors in all library functions.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
112(113)

Version 30-Apr-1998

 14. Support for Integer Only Devices
 The WMLScript language has been designed to run also on devices that do not support floating-point operations. The
following rules apply when WMLScript is used with such devices:

• Variables can only contain the following internal data types:
• Boolean
• Integer
• String
• Invalid

• Any LOAD_CONST bytecode that refers to a floating point constant in the constant pool will push an invalid
value on the operand stack instead of the constant value.

• Division (/) operation returns always an invalid value.
• All conversion rules related to floating-points are ignored.
• URL call with a floating-point value as an argument results in a failure to execute the call due to an invalid URL

syntax.

 The programmer can use Lang.float() [WMLSLibs] to test (during the run-time) if floating-point operations are supported.

(c) copyright Wireless Application Forum, Ltd, 1998
All rights reserved.

Page
113(113)

Version 30-Apr-1998

 15. Content Types
 The content types specified for WMLScript compilation unit and its textual and binary encoding are:

• Textual form: text/x-wap.wmlscript
• Binary form: application/x-wap.wmlscriptc

Ed: these types are not yet registered with the IANA and are consequently experimental content types.

