
WMLScript Crypto Library
 Version 05-Nov-1999

Wireless Application Protocol
WMLScript Crypto Library Specification

Disclaimer:

This document is subject to change without notice.

(c) copyright Wireless Application Forum, Ltd, 1999
All rights reserved.

Page 2(17)Version 05-Nov-1999

Contents

1 . SCOPE ...3

2 . DOCUMENT STATUS ..4

2.1 COPYRIGHT NOTICE..4
2.2 ERRATA ..4
2.3 COMMENTS...4

3 . REFERENCES..5

3.1 NORMATIVE REFERENCES...5
3.2 INFORMATIVE REFERENCES..5

4 . DEFINITIONS AND ABBREVIATIONS ..7

4.1 DEFINITIONS...7
4.2 ABBREVIATIONS ...7

5 . CRYPTOGRAPHIC LIBRARY DESCRIPTION...8

5.1 SIGNTEXT..8
5.1.1 Introduction..8
5.1.2 signText function definition..9
5.1.3 Handling of Certificates..10
5.1.4 Implementation using the WIM...10

6. FORMAT OF SIGNEDCONTENT..11

6.1. USAGE WITH SIGNTEXT ..13
6.2. HASH CALCULATION AND RELATIONSHIP TO PKCS#7 SIGNEDDATA ..13

APPENDIX A. LIBRARY SUMMARY ...15

APPENDIX B. RSA PKCS#1 SIGNATURE CALCULATION ...16

APPENDIX C. UTC TIME ..17

(c) copyright Wireless Application Forum, Ltd, 1999
All rights reserved.

Page 3(17)Version 05-Nov-1999

1. Scope
Wireless Application Protocol (WAP) is a result of continuous work to define an industry-wide specification for
developing applications that operate over wireless communication networks. The scope for the WAP Forum is to define a
set of standards to be used by service applications. The wireless market is growing very quickly and reaching new
customers and services. To enable operators and manufacturers to meet the challenges in advanced services,
differentiation and fast/flexible service creation, WAP defines a set of protocols in transport, session and application
layers. For additional information on the WAP architecture, refer to Wireless Application Protocol Architecture
Specification [WAPARCH].

This document specifies the library interface for WMLScript [WMLScript] to provide cryptographic functionality of a
WAP client. In addition this document specifies a signed content format to be used to convey signed data to/from WAP
devices. This functionality complements transport layer security provided by [WAPWTLS].

The notation and other conventions related to describing a WMLScript library are according to [WMLScript] and
[WMLSSL].

(c) copyright Wireless Application Forum, Ltd, 1999
All rights reserved.

Page 4(17)Version 05-Nov-1999

2. Document Status
This document is available online in the following formats:

• PDF format at http://www.wapforum.org/.

2.1 Copyright Notice
© Copyright Wireless Application Forum Ltd, 1999 all rights reserved.

2.2 Errata
Known problems associated with this document are published at http://www.wapforum.org/.

2.3 Comments
Comments regarding this document can be submitted to the WAP Forum in the manner published at
http://www.wapforum.org/.

(c) copyright Wireless Application Forum, Ltd, 1999
All rights reserved.

Page 5(17)Version 05-Nov-1999

3. References

3.1 Normative references
[ASN1] ISO/IEC 8824-1:1995 Information technology – Abstract Syntax Notation One (ASN.1) –

Specification of basic notation.
[DER] ISO/IEC 8825-2:1995 Information technology – ASN.1 encoding rules: Specification of Basic

Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER).
[ECMA262] Standard ECMA-262: "ECMAScript Language Specification", ECMA, June 1997
[IEEE754] ANSI/IEEE Std 754-1985: "IEEE Standard for Binary Floating-Point Arithmetic". Institute of

Electrical and Electronics Engineers, New York (1985).
[PKCS1] PKCS #1: RSA Encryption Standard”, version 1.5, RSA Laboratories, November 1993.
[PKCS7] PKCS #7: Cryptographic Message Syntax Standard, version 1.5, RSA Laboratories, November 1993.
[PKCS9] PKCS #9: Selected Attribute Types, version 1.1, RSA Laboratories, November 1993.
[PKCS15] PKCS #15: Cryptographic Token Information Standard”, version 1.0, RSA Laboratories, April 1999.

URL: ftp://ftp.rsa.com/pub/pkcs/pkcs-15/pkcs15v1.doc
[RFC1521] “MIME (Multipurpose Internet Mail Extensions), Part One: Mechanisms for Specifying and

Describing the Format of Internet Message Bodies”, N. Borenstein, et al, September 1993. URL:
ftp://ftp.isi.edu/in-notes/rfc1521.txt

[RFC1738] "Uniform Resource Locators (URL)", T. Berners-Lee, et al., December 1994. URL:
ftp://ftp.isi.edu/in-notes/rfc1738.txt

[RFC1808] "Relative Uniform Resource Locators", R. Fielding, June 1995. URL:
ftp://ftp.isi.edu/in-notes/rfc1808.txt

[RFC2119] "Key words for use in RFCs to Indicate Requirement Levels", S. Bradner, March 1997. URL:
ftp://ftp.isi.edu/in-notes/rfc2119.txt

[RFC2459] "Internet X.509 Public Key Infrastructure, Certificate and CRL Profile", R. Housley, at al., January
1999. URL: ftp://ftp.isi.edu/in-notes/rfc2459.txt

[RFC2560] “X.509 Internet Public Key Infrastructure: Online Certificate Status Protocol – OCSP”, M. Myers, R.
Akney, A. Malpani, S. Galperin, and C. Adams; IETF RFC 2560, June 1999.

[UNICODE] "The Unicode Standard: Version 2.0", The Unicode Consortium, Addison-Wesley Developers Press,
1996. URL: http://www.unicode.org/

[UTF8] "UTF-8, a transformation format of Unicode and ISO 10646", F. Yergeau, January 1998.
URL:ftp://ftp.isi.edu/in-notes/rfc2279.txt

[WAPARCH] "Wireless Application Protocol Architecture Specification", WAP Forum, 30-April-1998. URL:
http://www.wapforum.org/

[WAPWIM] “WAP Identity Module”, draft
[WAPWTLS] "Wireless Transport Layer Security", WAP Forum, 1998. URL: http://www.wapforum.org/
[WML] "Wireless Markup Language Specification", WAP Forum, 30-April-1998. URL:

http://www.wapforum.org/
[WMLScript] "WMLScript Language Specification", WAP Forum, 30-April-1998. URL:

http://www.wapforum.org/
[WMLSSL] "WMLScript Standard Libraries Specification", WAP Forum, 30-April-1998. URL:

http://www.wapforum.org/
[X9.62] “The Elliptic Curve Digital Signature Algorithm (ECDSA)”, ANSI X9.62 Working Draft, September

1998.

3.2 Informative References
[JavaScript] "JavaScript: The Definitive Guide", David Flanagan. O'Reilly & Associates, Inc. 1997
[RFC2068] "Hypertext Transfer Protocol - HTTP/1.1", R. Fielding, et al., January 1997. URL:

ftp://ftp.isi.edu/in-notes/rfc2068.txt

(c) copyright Wireless Application Forum, Ltd, 1999
All rights reserved.

Page 6(17)Version 05-Nov-1999

[WAE] "Wireless Application Environment Specification", WAP Forum, 30-April-1998. URL:
http://www.wapforum.org/

[WSP] "Wireless Session Protocol", WAP Forum, 1998. URL: http://www.wapforum.org/
[XML] "Extensible Markup Language (XML), W3C Proposed Recommendation 10-February-1998, REC-

xml-19980210", T. Bray, et al, February 10, 1998. URL: http://www.w3.org/TR/REC-xml

(c) copyright Wireless Application Forum, Ltd, 1999
All rights reserved.

Page 7(17)Version 05-Nov-1999

4. Definitions and Abbreviations

4.1 Definitions
The following are terms and conventions used throughout this specification.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY" and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

Please refer to [WMLScript] and [WMLSS] for WMLScript related terminology.

4.2 Abbreviations
For the purposes of this specification, the following abbreviations apply:

API Application Programming Interface
CA Certification Authority
ECMA European Computer Manufacturer Association
HTTP HyperText Transfer Protocol [RFC2068]
LSB Least Significant Bits
MSB Most Significant Bits
PKCS Public-Key Cryptography Standards
RFC Request For Comments
RSA Rivest Shamir Adleman public key algorithm
SHA Secure Hash Algorithm
UI User Interface
URL Uniform Resource Locator
W3C World Wide Web Consortium
WWW World Wide Web
WSP Wireless Session Protocol
WTLS Wireless Transport Layer Security
WTP Wireless Transport Protocol
WAP Wireless Application Protocol
WAE Wireless Application Environment
WTA Wireless Telephony Applications
WTAI Wireless Telephony Applications Interface
WBMP Wireless BitMaP
WIM WAP Identity Module

(c) copyright Wireless Application Forum, Ltd, 1999
All rights reserved.

Page 8(17)Version 05-Nov-1999

5. Cryptographic Library Description

Name: Crypto

Library ID: 6

Description: This library contains cryptographic functions.

The current library specification supports digital signature functionality . Other functionality (like encryption/decryption
or symmetric key based MAC) may be added in future versions.

5.1 signText

5.1.1 Introduction

Many kinds of applications, e.g., electronic commerce, require the ability to provide persistent proof that someone has
authorised a transaction. Although WTLS [WAPWTLS] provides transient client authentication for the duration of a
WTLS connection, it does not provide persistent authentication for transactions that may occur during that connection.
One way to provide such authentication is to associate a digital signature with data generated as the result of a transaction,
such as a purchase order or other financial document.

To support this requirement, the browser provides a WMLScript function, Crypto.signText, that asks the user to sign a
string of text. A call to the signText method displays the exact text to be signed and asks the user to confirm that. After the
data has been signed and both the signature and the data have been sent across the network, the server can extract the
digital signature and validate it, and possibly store it for accountability purposes.

The browser SHOULD use special signature keys that are distinct from authentication keys used for WTLS. A WIM
[WAPWIM] may be used for private key storage and signature computation.

(c) copyright Wireless Application Forum, Ltd, 1999
All rights reserved.

Page 9(17)Version 05-Nov-1999

5.1.2 signText function definition

Function: signedString = Crypto.signText(stringToSign, options, keyIdType, keyId)

Function ID: 16

Description: The function requests that a user digitally signs a text string. The calling script provides the
text to sign (stringToSign) which MUST be displayed to the user. The user may choose
either to cancel or approve the signing operation. If several certificates are available that
match the criteria indicated in parameters, the choices should be indicated to the user, using
e.g., labels of the certificates. If the user approves the operation, the browser MUST ask for
user verification information for the private key (e.g., the WIM PIN for a non-repudiation
key). If the user enters the correct information, signText signs the specified string and
returns signedString to the script as String, formatted as base-64 [RFC1521] encoding of
SignedContent .

Parameters: stringToSign = String

A string which MUST be displayed to the user. Note that the character set of this string is
indicated in the context where the script is contained.

options = Integer

Contains several option values, ORed together:

0x0001 – INCLUDE_CONTENT. If this option is set, the browser MUST include the
stringToSign in the result.

0x0002 – INCLUDE_KEY_HASH. If this option is set, the browser MUST include the
hash of the public key corresponding to the signature key in the result.

0x0004 – INCLUDE_CERTIFICATE. If this option is set, the browser MUST include the
certificate or a URL of the certificate in the result (whether the browser includes the
certificate content or a URL depends on which one is available). If the browser does not
have access to a certificate, it MUST return “error:noCert”.

keyIdType = Integer

Indicates the type of a key identifier:

0 – NONE. No key identifier is supplied. The browser may use any key and certificate
available.

1 – USER_KEY_HASH. A SHA-1 hash of the user public key is supplied in the next
parameter. The browser MUST use the signature key that corresponds to the given public
key hash or, if this key is not available, return “error:noCert”.

2 – TRUSTED_KEY_HASH. A SHA-1 hash of a trusted CA public key (or multiple of
them) is supplied in the next parameter. The browser MUST use a signature key that is
certified by the indicated CA (or some of them). If no such key is available, the browser
MUST return “error:noCert”.

keyId = String

Identifies the key in a way based on the previous parameter.

For a SHA-1 public key hash, contains the 20-byte hash. Multiple values may be
concatenated. Number of elements in the list is implied by the length of the parameter.

(c) copyright Wireless Application Forum, Ltd, 1999
All rights reserved.

Page 10(17)Version 05-Nov-1999

Return value: String or Invalid.

The content of the return string is the following

• in case of a succesful operation, the base-64 [RFC1521] encoding of SignedContent

• if there is no proper certificate or signature key available, the string “error:noCert”

• if the user cancelled the operation, the string “error:userCancel”

Exceptions: Errors in parameters, encoding or internal errors result in an invalid return value.

Example: var foo = Crypto.signText("Bill of Sale\n------------------\n3
Bolognese $18.00\n1 Pepperoni $7.00\n4 Lemonade $6.00\n----
--------------\nTotal Price $31.00",
0, 1,
"\x37\x00\xB6\x96\x37\x75\xE3\x93\x48\x74\xD3\x98\x47\x53\x94\
x34\x58\x97\xB5\xD6");
// The application indicates the signature key

5.1.3 Handling of Certificates

For verification of the digital signature, the server must have access to a user’s certificate that is signed by a Certification
Authority (CA) recognised by the server. There are several possibilities for how the server can get access to the user’s
certificate:
1. The certificate is appended to the signature.
2. The public key hash is appended to the signature. The server is able to fetch the corresponding certificate from a

certificate service.
3. A URL of the certificate is appended to the signature. The server is able to fetch the certificate using internet methods.
4. The server knows the user certificate based on a previous data exchange with the user, e.g., a previous digital

signature.

5.1.4 Implementation using the WIM

This chapter describes how to implement the signText function using the WIM [WAPWIM].

A non-repudiation key is used for signing. This implies usage of a an authentication object used for this key only, and that
the verification requirement cannot be disabled. E.g., in case of a PIN, the PIN MUST be entered separately for each
signature operation.

The PKCS#15 key ID (commonObjectAttributes.id) has the value of the public key hash. So, it can be used to find the
proper key or certificate, if the key is identified by USER_KEY_HASH. The certificate issuer public key hash
(PKCS15CommonCertificateAttributes.requestId) can be used to find a proper certificate, if it is identified by
TRUSTED_KEY_HASH.

Labels, contained in entries that describe private keys and certificates (commonObjectAttributes.label) SHOULD be used
to display options to use for signing.

For a smart card implementation, the procedure is described in [WAPWIM], chapter 11.4.6.

(c) copyright Wireless Application Forum, Ltd, 1999
All rights reserved.

Page 11(17)Version 05-Nov-1999

6. Format of SignedContent

This section defines a format for transmission of signed content to/from WAP devices. It is described below using WTLS
presentation [WAPWTLS]. Hash values of authenticated attributes are computed using a PKCS#7 template to provide
end-to-end authentication between WAP clients and devices supporting the PKCS#7 standard for signed data
representation.

enum {null(0), rsa_sha_pkcs1(1), ecdsa_sha_p1363(2), (255)}
DataSignatureAlgorithm;

Item Description

null No signature present.

rsa_sha_pkcs1 The signature is calculated according to [PKCS1] (see Appendix B), using octet string output.

ecdsa_sha The signature is calculated according to [X9.62], using octet string output.

struct {
 DataSignatureAlgorithm algorithm;
 switch (algorithm) {
 case null: struct {};
 default: opaque signature<0..2^16-1>;
 };
} Signature;

enum { implicit(0), sha_key_hash(1), wtls_certificate(2), x509_certificate(3),
x968_certificate(4), certificate_url(5), (255)} SignerInfoType;

Item Description

implicit The signer is implied by the content.

sha_key_hash The SHA-1 hash of the public key, encoded as specified in [WAPWTLS].

wtls_certificate A WTLS certificate.

x509_certificate An X.509v3 certificate.

x968_certificate An X9.68 certificate.

certificate_url A URL where the certificate is located.

struct {
SignerInfoType signer_info_type;
switch (signer_info_type) {

 case implicit: struct{};
 case sha_key_hash:
 opaque hash[20];
 case wtls_certificate:
 WTLSCertificate;
 case x509_certificate:

 opaque x509_certificate<0..2^16-1>;
case x968_certificate:

opaque x968_certificate<0..2^16-1;
case certificate_url:

(c) copyright Wireless Application Forum, Ltd, 1999
All rights reserved.

Page 12(17)Version 05-Nov-1999

 opaque url<0..255>;
 };
} SignerInfo;

enum {text(1), data(2), (255)} ContentType;

Item Description

text Encoded text (according to character set).

data Encoded data (encoding indicated by content_encoding parameter, see below).

enum (false(0), true(1)} Boolean;

struct {
 ContentType content_type;
 uint16 content_encoding;

Boolean content_present;
 switch (content_present) {
 case false: struct{};
 case true: opaque content<0..2^16-1>;
 };
} ContentInfo;

Item Description

content_type The type of the content that was signed.

content_encoding For text type of content, indicates the character set used to encode the text before signing (IANA
assigned character set number, see [WAPWSP]). The recommended character set is UTF-8
[UTF8]. Note that the hash is calculated over the encoded text (no length indication, terminating
character or character set indicator is included).

For data type of content, indicates a specific content type (assigned values are not defined yet).

content_present Indicates if the content is present in the structure.

content Content.

enum { gmt_utc_time(1), signer_nonce(2), (255) } AttributeType;

Item Description

gmt_utc_time The current time and date in UTC format (see Appendix C). Only the 12 actual date/time octet
values are included; the trailing ‘Z’, indicating GMT or Zulu, is omitted since it is implicit.

signer_nonce A nonce generated by the signer. This attribute MAY be used by devices that do not have an
internal clock.

struct {
AttributeType attribute_type;
switch (attribute_type) {

case gmt_utc_time: uint8[12];
case signer_nonce: opaque signer_nonce[8];

 }
} AuthenticatedAttribute;

(c) copyright Wireless Application Forum, Ltd, 1999
All rights reserved.

Page 13(17)Version 05-Nov-1999

struct {
uint8 version;
Signature signature;
SignerInfo signer_infos<0..2^16-1>;
ContentInfo content_info;

 AuthenticatedAttribute authenticated_attributes<0..255>;
} SignedContent;

Item Description

version Version of the SignedContent structure. For this specification the version is 1.

signature Signature

signer_infos Information on the signer. This may contain zero items (in case the signer is implicit). Also,
there may be multiple items of SignerInfo present (public key hash and a certificate).

content_info Content that was signed. The actual content is optionally included in the structure.

authenticated_
attributes

Attributes that are included in the signature.

6.1. Usage with signText
The result returned by signText is formatted as SignedContent . The original stringToSign is optionally included in
the structure. It is the responsibility of the application that the verifying party (server) will have access both to the original
text and the signature. The text may be generated in the server and cached there. Or, if the text is generated in the client
(e.g., based on user input), it should be included in the structure.

The verification service must take the character set into account. If the original service generated the stringToSign, it is
necessary to convert that to a proper character set encoding.

6.2. Hash Calculation and Relationship to PKCS#7 SignedData
The signed content type is defined so as to allow end-to-end authentication of signed content based on PKCS#7 [PKCS7]
signed data structures. A proxy server or gateway may accept a PKCS#7 signed data object and convert to the WAP
signed content type without violating the end-to-end integrity of the signature. This is done by compressing the PKCS#7
header (by representing it in WTLS encoding format) without information loss. Since the mobile device can reconstruct
the original header with any authenticated attributes it can verify the original signature.

When a mobile device is sending signed content it constructs the PKCS#7 header using a static template and filing in the
relevant attribute values. The hash is computed as specified in [PKCS7]. The mobile device then formats and sends the
SignedContent type. This allows a proxy or gateway to convert this back to PKCS#7 format for transmission to a server.
In this way we achieve both bandwidth efficiency and limited parsing requirements on the mobile device while enabling
end-to-end signed content verification with servers not supporting the WAP signed content type.

The hash calculation on the mobile device is performed as defined in [PKCS7], using the signer's authenticated attributes.
This requires that the input for the hash calculation is represented in ASN.1 DER encoding. As shown below, complex
DER encoding is not required, since the length of the values are known beforehand. An implementation needs only the
(static) PKCS#7 DER structure, filing in the variable fields. It need not understand the specifics of the ASN.1 encoding.

According to [PKCS7], the mandatory authenticated attributes are the contentType and messageDigest attributes (hash of
the original data). Additionally, either signing time or a random nonce MUST be used as an authenticated attribute.
Signing time is recommended. A random number MAY be used by implementations that do not support real time clock.

(c) copyright Wireless Application Forum, Ltd, 1999
All rights reserved.

Page 14(17)Version 05-Nov-1999

The message-digesting process computes a message digest on the content together with the signer's authenticated
attributes. The initial input to the message-digesting process is the value of the content being signed.

The authenticated attributes are the following [PKCS9].

Attribute OID OID in Binary

contentType pkcs9-3 2a 86 48 86 f7 0d 01 09 03

messageDigest pkcs9-4 2a 86 48 86 f7 0d 01 09 04

signingTime pkcs9-5 2a 86 48 86 f7 0d 01 09 05

signerNonce pkcs9-25-3 2a 86 48 86 f7 0d 01 09 19 03

To calculate the hash, the signer uses the following buffer as a template:

31 57
 30 16
 06 09 2a 86 48 86 f7 0d 01 09 03 -- contentType
 06 09 2a 86 48 86 f7 0d 01 07 01 -- data
 30 1a
 06 09 2a 86 48 86 f7 0d 01 09 05 -- signingTime

 17 0d xx xx xx xx xx xx xx xx xx xx xx xx xx -- UTCTime
 30 21
 06 09 2a 86 48 86 f7 0d 01 09 04 -- messageDigest
 04 14 xx
 -- SHA-1 digest

In order to construct the input for hash calculation, the following steps are performed
• use initially a 89-byte buffer as above (bytes 1...89)
• replace bytes 42...54 with the value of UTC time expressed as YYMMDDHHMMSSZ (ASCII-encoded)
• replace bytes 70...89 with the 20-byte value of the SHA-1 hash

The next step is to calculate the hash from the above 89-byte buffer. Finally, the signature is calculated.

Note that the PKCS#7 contentType “data” is used for both text and data content types specified in the beginning of this
chapter.

For verification, the above structure needs to be constructed based on values transmitted in SignedContent: content_type,
gmt_utc_time.

Note that the authenticated attributes are included in the in ascending order compared as octet strings.

A proxy server MAY construct a PKCS#7 [PKCS7] SignedData object based on a received SignedContent object. The
motivation of doing this would be that some internet or other service applications may require a PKCS#7 formatted object
to verify the signature. The conversion to PKCS#7 is based on the original text, the signature and a certificate.

A proxy server MAY also convert a PKCS#7 SignedData object to a SignedContent object for transmission to a mobile
device.

When the mobile device receives (e.g. over WSP) a SignedContent object (containing text or any type of data), it should
verify the signature and be able to present information on the signer and the result of verification: if it was succesful, or if
it failed with different reasons, like invalid signature or inability to verify the signer's certificate. When the SignedContent
object contains signed text, the original text and result of verification must be presented in a manner which is distinctive
from texts generated by applications using e.g. WML or WMLScript.

(c) copyright Wireless Application Forum, Ltd, 1999
All rights reserved.

Page 15(17)Version 05-Nov-1999

Appendix A. Library Summary

The libraries and their library identifiers:

Library name Library ID Page

Crypto 6 8

The libraries and their functions:

Crypto library Function ID

signText 16

(c) copyright Wireless Application Forum, Ltd, 1999
All rights reserved.

Page 16(17)Version 05-Nov-1999

Appendix B. RSA PKCS#1 Signature Calculation
The calculation is based on [PKCS1], chapter 10.1. It consists of three steps: message digesting (hashing), data encoding
and RSA encryption. (The fourth step, octet-string-to-bit-string conversion is not necessary here.)

The message (the text being signed) is digested using SHA-1 [SHA1]. The 20-byte output and a SHA-1 algorithm
identifier shall be combined into an ASN.1 [ASN1] value of type DigestInfo, described below, which shall be DER-
encoded [DER] to give an octet string, the data.

DigestInfo ::= SEQUENCE {
 digestAlgorithm DigestAlgorithmIdentifier,
 digest Digest }

DigestAlgorithmIdentifier ::= AlgorithmIdentifier

Digest ::= OCTET STRING

digestAlgorithm identifies the message-digest algorithm. For this application, it should associate the SHA-1
algorithm. The object identifier is the following

sha-1 OBJECT IDENTIFIER ::=
{ iso(1) identified-organization(3) oiw(14) secsig(3) 2 26 }

The BER encoding of the above is: 2b 0e 03 02 1a

digest is the result of the message digesting process, ie, the message digest.

The BER encoding of DigestInfo is

30 21 -- SEQUENCE (DigestInfo)
30 09 -- SEQUENCE (AlgorithmIdentifier)

06 05 2b 0e 03 02 1a -- digestAlgorithm = sha-1
05 00 -- parameters = NULL

04 14 -- OCTET STRING (digest)
xx xx xx xx -- digest value
xx xx xx xx
xx xx xx xx
xx xx xx xx
xx xx xx xx

where the last 20 bytes is the message digest. So, in order to implement the BER-encoded DigestInfo , it is sufficient to
concatenate the constant 15 bytes and the 20 bytes of the hash.

The resulting data (BER-encoded DigestInfo), is encrypted with the signer’s private key as described in [PKCS1]
section 7, using the block type 1. The resulting octet string, is the signature.

(c) copyright Wireless Application Forum, Ltd, 1999
All rights reserved.

Page 17(17)Version 05-Nov-1999

Appendix C. UTC Time
The universal time type, UTCTime, is a standard ASN.1 type intended for international applications where local time
alone is not adequate. UTCTime specifies the year through the two low order digits and time is specified to the precision
of one minute or one second. UTCTime includes either Z (for Zulu, or Greenwich Mean Time) or a time differential.

For the purposes of this profile, UTCTime values MUST be expressed Greenwich Mean Time (Zulu) and MUST include
seconds (i.e., times are YYMMDDHHMMSSZ), even where the number of seconds is zero. Conforming systems MUST
interpret the year field (YY) as follows:

Where YY is greater than or equal to 50, the year shall be interpreted as 19YY; and where YY is less than 50, the year
shall be interpreted as 20YY.

The above usage is as is specified in [RFC2459].

For transmission in the signed content AuthenticatedAttribute type (gmt_utc_time) the trailing ‘Z’ is
omitted as it is implicit.

